AI Article Synopsis

  • The study assessed the stability and effectiveness of naphthalene biodegradation in a continuous flow reactor using soil slurry by applying periodic disturbances with naphthalene and other organic carbon inputs.
  • High biodegradation rates were achieved (95-99% removal) across the experiments, with minimal naphthalene detected in off-gas and effluent despite attempts to slow down the process by lowering temperature or oxygen levels.
  • The microbial community remained mostly stable in terms of population density, demonstrating the system's ability to adapt to environmental changes while maintaining effective naphthalene degradation even at low temperatures (down to 4°C).

Article Abstract

Periodic perturbations were used to evaluate the system stability and robustness of naphthalene biodegradation in a continuous flow stirred tank reactor (CSTR) containing a soil slurry. The experimental design involved perturbing the test system using a sinusoidal input either of naphthalene or non-naphthalene organic carbon at different frequencies during steady state operation of the reactors. The response of the test system was determined by using time series off-gas analysis for naphthalene liquid phase concentration and degradation, total viable cell counts, and gene probe analysis of naphthalene degradative genotype, and by batch mineralization assays. Naphthalene biodegradation rates were very high throughout the experimental run (95 to greater than 99% removed) resulting in very low or undetectable levels of naphthalene in the off-gas and reactor effluent. Attempts to reduce the rate of naphthalene biotransformation by either reducing the reactor temperature from 20 degrees C to 10 degrees C or the dissolved oxygen level (greater than 1 mg/L) were unsuccessful. Significant naphthalene biodegradation was observed at 4 degrees C. While variable, the microbial community as measured by population densities was not significantly affected by temperature changes. In terms of naphthalene biotransformation, the system was able to adapt readily to all perturbations in the reactor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00114598DOI Listing

Publication Analysis

Top Keywords

naphthalene biodegradation
16
naphthalene
10
biodegradation continuous
8
continuous flow
8
soil slurry
8
test system
8
analysis naphthalene
8
naphthalene biotransformation
8
reactor
5
dynamic response
4

Similar Publications

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

Background/objectives: Vitamin K-dependent proteins (VKDPs) all commonly possess specially modified γ-carboxyglutamic acid residues created in a vitamin K-dependent manner. Several liver-derived coagulation factors are well characterised VKDPs. However, much less is known about extrahepatic VKDPs, which are more diverse in their molecular structures and functions, and some of which have been implicated in inflammatory disorders.

View Article and Find Full Text PDF

Background: Long COVID (LC) is characterized by persistent symptoms at least 3 months after a SARS-COV-2 infection. LC has been associated with fungal translocation, gut dysfunction, and enhanced systemic inflammation. Currently, there is no approved treatment for this condition.

View Article and Find Full Text PDF

Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the barrier.

View Article and Find Full Text PDF

Lovastatin and Resveratrol Synergistically Improve Wound Healing and Inhibit Bacterial Growth.

Int J Mol Sci

January 2025

Molecular and Cell Biology Laboratory, Prince Naif bin Abdulaziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia.

Wound healing is a complex physiological process, with scarring and infection caused by and being the most common complications. The reutilization of known medications has received increased attention for their role in cell function as small molecules. Examples of these include lovastatin, a cholesterol-lowering agent, and resveratrol, which have multiple biological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!