We planned to investigate the expression of protein kinase C (PKC) isoforms in acinar epithelial cells of salivary glands in the non-obese diabetic (NOD) mouse to find out if they develop changes of the PKC system like those seen in the human counterpart, i.e. in Sjögren's syndrome. Parotid, submandibular, and sublingual glands from NOD and control BALB/c mice were stained with a panel of monoclonal antibodies directed against conventional (alpha, beta, and gamma), novel (delta, epsilon, and theta), and atypical (lambda and iota) PKC isoforms using the streptavidin/HRP method. Similarly to human labial salivary glands, acinar epithelial cells of the healthy control BALB/c mice contained two of the conventional PKC isoforms, alpha and beta. Acinar and ductal epithelial cells also contained the atypical PKC isoforms lambda and iota. PKC isoforms gamma, delta, epsilon, and theta were not found. NOD mice which displayed focal sialadenitis contained the same conventional and atypical PKC isoforms. The acinar cells in NOD mice, in contrast to the Sjögren's syndrome patients, did not lack PKC alpha or beta. On the contrary, PKC alpha and beta staining was stronger than in the control BALB/c mice. The present results demonstrate that both conventional and atypical PKC isoforms participate in the salivary epithelial cell biology and that there are mouse strain-associated and/or disease state-associated changes in their expression. The lack of PKC alpha and beta isoforms found in Sjögren's syndrome was not reproduced in NOD mice, which discloses one more difference between the human disease and its NOD mouse model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00296-003-0386-0DOI Listing

Publication Analysis

Top Keywords

pkc isoforms
28
alpha beta
20
epithelial cells
16
sjögren's syndrome
16
acinar epithelial
12
control balb/c
12
balb/c mice
12
atypical pkc
12
nod mice
12
pkc alpha
12

Similar Publications

The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells.

Biomedicines

November 2024

Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.

Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results.

View Article and Find Full Text PDF

Background: Atherosclerosis is a lipid mediated chronic inflammatory disease driven my macrophages (MØ). Protein Kinase C - epsilon (PKCɛ) is is a serine/threonine kinase involved in diverse cellular processes such as migration, growth, differentiation, and survival. PKCɛ is known to act in a context dependent manner within heart, however, its role in atherosclerosis is unknown.

View Article and Find Full Text PDF

Transcriptional regulation in the absence of inositol trisphosphate receptor calcium signaling.

Front Cell Dev Biol

December 2024

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States.

The activation of IP receptor (IPR) Ca channels generates agonist-mediated Ca signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IPR isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies.

View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial dysfunction and oxidative stress are significant factors in age-related neurodegenerative diseases, and PKCδ isoform in dopaminergic neurons is critical for cell death during these stress events through caspase-3 activation.
  • - The study revealed that upon mitochondrial dysfunction, PKCδ gets activated and moves to the nucleus, where it interacts with Lamin B1, causing nuclear damage and contributing to neuronal cell death.
  • - Experiments showed that blocking PKCδ activation or modifying Lamin B1 can prevent nuclear damage, confirming PKCδ's role as a major player in neurodegenerative processes linked to mitochondrial stress.
View Article and Find Full Text PDF

This study combines high-throughput screening and virtual molecular docking to identify natural compounds targeting PKC in skin aging. Go 6983, a PKC inhibitor, showed potent suppression of MMP-1 transcription. EGCG was one of the candidates that showed it could significantly lower UVB-induced MMP-1 expression in HaCaT cells, and it had a strong affinity for PKCα.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!