Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantitative variation in the accumulation of two major capsaicinoids responsible for pungency in the fruit of chile peppers, capsaicin and dihydrocapsaicin, was analyzed in a cross between the non-pungent Capsicum annuum parent cv. Maor and a pungent Capsicum frutescens parent, accession BG 2816. In order to identify quantitative trait loci (QTLs) for capsaicinoid content, we employed the bulked segregant analysis method and screened bulked DNA from F2 individuals at the extremes of the distribution of capsaicinoid content with RAPD primers. Screening with 400 primers allowed the identification of three loci that were polymorphic between the bulks. These RAPD markers were converted to SCARs and subsequently mapped with additional RFLP markers to chromosome 7 of pepper. QTL interval analysis for individual and total capsaicinoid content identified a major QTL, termed cap, which explained 34-38% of the phenotypic variation for this trait in two growing environments. For all measurements, the allele of the pungent parent BG 2816 at cap contributed to the increased level of pungency. To determine whether known structural genes in the pathway could define a candidate for this QTL, 12 clones obtained from differentially expressed transcripts from placental tissue in pungent peppers were also mapped. None of them had a significant effect on this trait, nor did the allelic state at the locus C, the on/off switch for pungency in pepper, located on chromosome 2. The identity of cap and its effect on capsaicin content in other backgrounds will be addressed in future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-003-1405-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!