Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anaerobic bacteria of the genus Clostridia are a major threat to human and animal health, being responsible for pathologies ranging from food poisoning to gas gangrene. In each of these, the production of sophisticated exotoxins is the main cause of disease. The most powerful clostridial toxins are tetanus and botulinum neurotoxins, the causative agents of tetanus and botulism. They are structurally organized into three domains endowed with distinct functions: high affinity binding to neurons, membrane translocation and specific cleavage of proteins controlling neuroexocytosis. Recent discoveries regarding the mechanism of membrane recruitment and sorting of these neurotoxins within neurons make them ideal tools to uncover essential aspects of neuronal physiology in health and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0966-842x(03)00210-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!