Rationale And Objectives: Recently developed MR imaging techniques using inversion recovery are a sensitive tool to identify and quantify morphologic changes in the substantia nigra due to neurodegeneration. Using a semi-automated computer segmentation technique to isolate the substantia nigra pars compacta (SN(c)), we propose a colored image fusion technique to visually assess the sites of damage in the SN(c) and integrate the information obtained from two implemented inversion-recovery sequences.

Patients And Methods: Six patients and six age-matched control subjects were scanned using a combination of two MR imaging inversion-recovery (IR) pulse sequences. A subgroup of them was used to develop our technique. Images were blended together into a final (RGBA) image, where A stands for the alpha channel describing transparency.

Results: Abnormalities in the SN(c) can be accurately assessed in location, shape, and variations of signal intensities within the segmented SN(c) by varying the transparency (alpha) channel of the color fusion image. Several previous findings such as the lateral-medial gradient of signal change and a ventral-dorsal broadening of the pars compacta are accompanied by an overall mild-to-severe heterogeneity of neurodegeneration patterns.

Conclusion: Color fusion techniques revealed subtle changes in the neurodegeneration of the substantia nigra in Parkinson disease, which can be helpful for an objective and hence effective visual assessment of disease progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1076-6332(03)00105-3DOI Listing

Publication Analysis

Top Keywords

substantia nigra
12
parkinson disease
8
fusion techniques
8
pars compacta
8
alpha channel
8
color fusion
8
computer assessment
4
neurodegeneration
4
assessment neurodegeneration
4
neurodegeneration parkinson
4

Similar Publications

Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the pro-gressive loss of dopaminergic neurons in the substantia nigra, leading to motor dysfunction and non-motor symptoms. Current treatments primarily offer symptomatic relief without halt-ing disease progression. This has driven the exploration of natural compounds with neuropro-tective properties.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.

View Article and Find Full Text PDF

Re-examining the pathobiological basis of gait dysfunction in Parkinson's disease.

Trends Neurosci

January 2025

Department of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada.

Parkinson's disease (PD) is a significant source of morbidity, especially with an aging population. Gait problems, particularly freezing of gait (FOG), remain a persistent issue, causing falls and reduced quality of life without consistent responses to therapies. PD and related symptoms have classically been attributed to dopamine deficiency secondary to substantia nigra degeneration from Lewy body (LB) and Lewy neurite (LN) infiltration.

View Article and Find Full Text PDF

Parkinson's disease is the second most common neurodegenerative disease, characterized by substantial loss of dopaminergic (DA) neurons, the formation of Lewy bodies (LBs) in the substantia nigra, and pronounced neuroinflammation. The nucleotide-binding domain like leucine-rich repeat- and pyrin domain-containing protein 3 (NLRP3) inflammasome is one of the pattern recognition receptors (PRRs) that function as intracellular sensors in response to both pathogenic microbes and sterile triggers associated with Parkinson's disease. These triggers include reactive oxygen species (ROS), misfolding protein aggregation, and potassium ion (K) efflux.

View Article and Find Full Text PDF

The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!