This investigation compared the predictions of two models describing the integration of reinforcement and punishment effects in operant choice. Deluty's (1976) competitive-suppression model (conceptually related to two-factor punishment theories) and de Villiers' (1980) direct-suppression model (conceptually related to one-factor punishment theories) have been tested previously in nonhumans but not at the individual level in humans. Mouse clicking by college students was maintained in a two-alternative concurrent schedule of variable-interval money reinforcement. Punishment consisted of variable-interval money losses. Experiment 1 verified that money loss was an effective punisher in this context. Experiment 2 consisted of qualitative model comparisons similar to those used in previous studies involving nonhumans. Following a no-punishment baseline, punishment was superimposed upon both response alternatives. Under schedule values for which the direct-suppression model, but not the competitive-suppression model, predicted distinct shifts from baseline performance, or vice versa, 12 of 14 individual-subject functions, generated by 7 subjects, supported the direct-suppression model. When the punishment models were converted to the form of the generalized matching law, least-squares linear regression fits for a direct-suppression model were superior to those of a competitive-suppression model for 6 of 7 subjects. In Experiment 3, a more thorough quantitative test of the modified models, fits for a direct-suppression model were superior in 11 of 13 cases. These results correspond well to those of investigations conducted with nonhumans and provide the first individual-subject evidence that a direct-suppression model, evaluated both qualitatively and quantitatively, describes human punishment better than a competitive-suppression model. We discuss implications for developing better punishment models and future investigations of punishment in human choice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1284944 | PMC |
http://dx.doi.org/10.1901/jeab.2003.80-1 | DOI Listing |
Phytomedicine
December 2024
Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China. Electronic address:
Background: Ulcerative colitis (UC) is a type of inflammatory bowel disease primarily affecting the colon and rectum. The clinical symptoms of UC include persistent diarrhea, abdominal pain, and rectal bleeding, with chronic inflammation often limited to the mucosal layer of the colon. Macrophages play a significant role in the pathogenesis of UC in response to the presence of gut microbiota.
View Article and Find Full Text PDFJ Med Chem
July 2024
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
Despite being a highly sought-after therapeutic target for human malignancies, myelocytomatosis viral oncogene homologue (MYC) has been considered intractable due to its intrinsically disordered nature, making the discovery of in vivo effective inhibitors that directly block its function challenging. Herein, we report structurally novel alkynyl-substituted phenylpyrazole derivatives directly perturbing MYC function. Among them, compound exhibited superior antiproliferative activities to those of MYCi975 against multiple malignant cell lines.
View Article and Find Full Text PDFCells
June 2024
Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
Proinflammatory T-lymphocytes recruited into the brain and spinal cord mediate multiple sclerosis (MS) and currently there is no cure for MS. IFN-γ-producing Th1 cells induce ascending paralysis in the spinal cord while IL-17-producing Th17 cells mediate cerebellar ataxia. STAT1 and STAT3 are required for Th1 and Th17 development, respectively, and the simultaneous targeting of STAT1 and STAT3 pathways is therefore a potential therapeutic strategy for suppressing disease in the spinal cord and brain.
View Article and Find Full Text PDFSci China Life Sci
September 2024
School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China.
The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis.
View Article and Find Full Text PDFExpert Opin Drug Discov
May 2024
Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
Introduction: Microglia, the primary immune cells in the brain, play multifaceted roles in Alzheimer's disease (AD). Microglia can potentially mitigate the pathological progression of AD by clearing amyloid beta (Aβ) deposits in the brain and through neurotrophic support. In contrast, disproportionate activation of microglial pro-inflammatory pathways, as well as excessive elimination of healthy synapses, can exacerbate neurodegeneration in AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!