Download full-text PDF

Source

Publication Analysis

Top Keywords

[universal portable
4
portable apparatus
4
apparatus artificial
4
artificial respiration]
4
[universal
1
apparatus
1
artificial
1
respiration]
1

Similar Publications

Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.

Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

View Article and Find Full Text PDF

Biotinylation-based lateral flow assays for pathogenic and total bacteria detection.

Anal Chim Acta

February 2025

Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China. Electronic address:

Background: It is highly desirable to concurrently evaluate both pathogenic and total bacteria in water and food environments. As a point-of-care platform for biochemical tests, lateral flow assay (LFA) has been widely used for pathogenic bacteria due to its portability and fast time of outcome. However, traditional LFA was unable to detect total bacteria due to the lack of a universal antibody that could bind all the bacteria.

View Article and Find Full Text PDF

Disease prediction using computer-based methods is now an established area of research. The importance of technological intervention is necessary for the better management of disease, as well as to optimize use of limited resources. Various AI-based methods for disease prediction have been documented in the literature.

View Article and Find Full Text PDF

Dual-signal portable microRNA biosensor based on a photothermal/visual strategy induced by cascading amplification techniques and horseradish peroxidase.

Talanta

January 2025

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei Province, PR China. Electronic address:

MicroRNAs (miRNAs) serve as potential biomarkers for many diseases such as cancer, neurodegenerative diseases and cardiovascular conditions. The portable and accurate detection of miRNA is of great significance for the early diagnosis, treatment optimization and prognostic evaluation of diseases. Herein, a photothermal/visual dual-mode assay for let-7a is developed utilizing oxidized 3, 3', 5, 5' - tetramethylbenzidine (oxTMB) as signal reporter.

View Article and Find Full Text PDF

Innovative equipment for lower limb muscle strength measurement: Design and application in sarcopenia screening.

Clin Biomech (Bristol)

December 2024

Department of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.

Background: Grip Strength has been established as a practical and efficient method for screening and diagnosing sarcopenia. It is recognized that with advancing age, there is a more significant decline in lower limb muscle mass compared to the upper limb. However, due to the inherent complexity of assessing lower limb muscle strength compared to measuring Grip Strength, these assessments have not been universally adopted for sarcopenia screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!