Quantitative autoradiographic study of somatostatin and neurotensin binding sites in medulla oblongata of SIDS.

Neurochem Int

Laboratoire d'Anatomie Pathologique, Faculté de Médecine Alexis Carrel, Lyon, France.

Published: January 1992

Quantitative autoradiography analysis of neurotensin (NT) and somatostatin (SS) binding sites was performed on coronal sections of the medulla oblongata from 2 fetuses, 6 controls and 7 victims of Sudden Infant Death Syndrome (SIDS). Throughout the first postnatal year, mean SS binding site density was similar in controls and SIDS in all structures of the medulla oblongata. The density of neurotensin binding sites was significantly higher in the nucleus of tractus solitarius (NTS) of SIDS than in controls, but there was no significant differences in the other areas of the medulla oblongata. Our findings suggest an immature developmental pattern of increased NT binding sites the NTS of SIDS. This alteration may be related to an abnormal central cardiorespiratory and arousal control which is thought to be present in SIDS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0197-0186(92)90134-dDOI Listing

Publication Analysis

Top Keywords

binding sites
16
medulla oblongata
16
neurotensin binding
8
nts sids
8
sids
6
binding
5
quantitative autoradiographic
4
autoradiographic study
4
study somatostatin
4
somatostatin neurotensin
4

Similar Publications

GLiDe: a web-based genome-scale CRISPRi sgRNA design tool for prokaryotes.

BMC Bioinformatics

January 2025

MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Background: CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.

Results: We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms.

View Article and Find Full Text PDF

Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a common herpesvirus that can severely affect transplant recipients, those with AIDS, and newborns. Existing synthetic medications face limitations, including toxicity, processing issues, and viral resistance. As part of this study, the efficacy of the extracellular enzyme laccase isolated from a widely available mushroom (Pleurotus pulmonarius) was compared to that of ganciclovir, a common antiviral, used against HCMV.

View Article and Find Full Text PDF

Lysozyme revisited.

Structure

January 2025

Department of Computational Chemistry, Lund University, Chemical Centre, P.O. Box 124, 221 00 Lund, Sweden; European Spallation Source ESS ERIC, P.O. Box 176, 221 00 Lund, Sweden. Electronic address:

Lysozyme is a model system for crystallographers. In this issue of Structure, Ramos et al. report atomic resolution neutron structures of lysozyme, which unambiguously show the protonation states and hydrogen-bonding networks of the active site.

View Article and Find Full Text PDF

It takes two to tango: The second membrane-binding site in peripheral proteins.

Structure

January 2025

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India. Electronic address:

In this issue of Structure, Soteriou et al. use cell biology, in vitro reconstitution approaches, and molecular dynamics (MD) simulations to characterize the membrane association of AKT1. The authors show that the AKT1 pleckstrin homology domain contains two essential and cooperative PI(3,4,5)P-binding sites that enable stable membrane binding of AKT1 in the requisite orientation required for effective downstream signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!