Download full-text PDF

Source

Publication Analysis

Top Keywords

[effect tryptophanol
4
tryptophanol phosphoric
4
phosphoric acid
4
acid ester
4
ester tryptophanol
4
tryptophanol tryptophanal
4
tryptophanal metabolites
4
metabolites tryptophan
4
tryptophan microorganisms]
4
[effect
1

Similar Publications

The protein p53 is a transcription factor with several key roles in cells, including acting as a tumour suppressor. In most human cancers its tumour suppressor function is inactivated, either through inhibition by negative regulators or by mutation in the TP53 gene. Thus, there is a high interest in developing molecules able to activate p53 tumour suppressor activity.

View Article and Find Full Text PDF

Metabolism-Guided Optimization of Tryptophanol-Derived Isoindolinone p53 Activators.

Pharmaceuticals (Basel)

January 2023

Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.

For the first time, the pharmacokinetic (PK) profile of tryptophanol-derived isoindolinones, previously reported as p53 activators, was investigated. From the metabolites' identification, performed by liquid chromatography coupled to high resolution tandem mass spectrometry (LC-HRMS/MS), followed by their preparation and structural elucidation, it was possible to identify that the indole C2 and C3 are the main target of the cytochrome P450 (CYP)-promoted oxidative metabolism in the tryptophanol-derived isoindolinone scaffold. Based on these findings, to search for novel p53 activators a series of 16 enantiopure tryptophanol-derived isoindolinones substituted with a bromine in indole C2 was prepared, in yields of 62-89%, and their antiproliferative activity evaluated in human colon adenocarcinoma HCT116 cell lines with and without p53.

View Article and Find Full Text PDF

Mutant p53 reactivator SLMP53-2 hinders ultraviolet B radiation-induced skin carcinogenesis.

Pharmacol Res

January 2022

LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal. Electronic address:

The growing incidence of skin cancer (SC) has prompted the search for additional preventive strategies to counteract this global health concern. Mutant p53 (mutp53), particularly with ultraviolet radiation (UVR) signature, has emerged as a promising target for SC prevention based on its key role in skin carcinogenesis. Herein, the preventive activity of our previously disclosed mutp53 reactivator SLMP53-2 against UVR-induced SC was investigated.

View Article and Find Full Text PDF

To search for novel p53 activators, four series of novel (S)- and (R)-tryptophanol-derived oxazoloisoindolinones were synthesized in a straightforward manner and their antiproliferative activity was evaluated in the human colorectal cancer HCT116 cell line. Structural optimization of the hit compound SLMP53-1 led to the identification of a (R)-tryptophanol-derived isoindolinone that was found to be six-fold more active, with increased selectivity for HCT116 cells with p53 and with low toxicity in normal cells. Binding studies with MDM2 showed that the antiproliferative activity of tryptophanol-derived isoindolinones does not involve inhibition of the main negative regulator of the p53 protein.

View Article and Find Full Text PDF

SLMP53-1 Inhibits Tumor Cell Growth through Regulation of Glucose Metabolism and Angiogenesis in a P53-Dependent Manner.

Int J Mol Sci

January 2020

LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.

The Warburg effect is an emerging hallmark of cancer, which has the tumor suppressor p53 as its major regulator. Herein, we unveiled that p53 activation by ()-tryptophanol-derived oxazoloisoindolinone (SLMP53-1) mediated the reprograming of glucose metabolism in cancer cells and xenograft human tumor tissue, interfering with angiogenesis and migration. Particularly, we showed that SLMP53-1 regulated glycolysis by downregulating glucose transporter 1 (GLUT1), hexokinase-2 (HK2), and phosphofructokinase-2 isoform 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3) (key glycolytic enzymes), while upregulating the mitochondrial markers synthesis of cytochrome oxidase 2 (SCO2), cytochrome oxidase subunit 4 (COX4), and OXPHOS mitochondrial complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!