In this report, a novel bioisostere of the alpha-amino acid, 3,4-diamino-3-cyclobutene-1,2-dione, has been incorporated into a series of compounds which are NMDA antagonists. These compounds, which are achiral and easily prepared, demonstrated good affinity at the NMDA receptor by their ability to displace [3H]CPP binding in vitro. In particular, the phosphonic acid 24 provided protection against NMDA-induced lethality in mice equivalent to 2-amino-7-phosphonoheptanoic acid (5). This was considered an encouraging result in lieu of the fact that 24, like 5, lacks the conformational rigidity of the more potent NMDA antagonists. In addition, analogs that incorporate the 1,2,4-oxadiazolidine-3,5-dione heterocycle of quisqualic acid and the unsaturation of kainic acid were prepared to explore selectivity at the non-NMDA receptor subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00103a010DOI Listing

Publication Analysis

Top Keywords

nmda antagonists
12
acid
7
bioisosteric replacement
4
replacement alpha-amino
4
alpha-amino carboxylic
4
carboxylic acid
4
acid functionality
4
functionality 2-amino-5-phosphonopentanoic
4
2-amino-5-phosphonopentanoic acid
4
acid yields
4

Similar Publications

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most frequent form of dementia and represents an increasing global burden, particularly in countries like Indonesia, where the population has begun to age significantly. Current medications, including cholinesterase inhibitors and NMDA receptor antagonists, have modest effects on clinical symptoms in the early to middle stages, but there is no curative treatment available so far despite progress. Activating or repressing epigenetic modifications, including DNA methylation, histone modification and microRNA regulation, appears to play an important role in AD development.

View Article and Find Full Text PDF

Redefining Ketamine Pharmacology for Antidepressant Action: Synergistic NMDA and Opioid Receptor Interactions?

Am J Psychiatry

January 2025

Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides).

Ketamine is a racemic compound and medication comprised of ()-ketamine and ()-ketamine enantiomers and its metabolites. It has been used for decades as a dissociative anesthetic, analgesic, and recreational drug. More recently, ketamine, its enantiomers, and its metabolites have been used or are being investigated for the treatment of refractory depression, as well as for comorbid disorders such as anxiety, obsessive-compulsive, and opioid use disorders.

View Article and Find Full Text PDF

Discovery of Brain-Penetrative Negative Allosteric Modulators of NMDA Receptors Using FEP-Guided Structure Optimization and Membrane Permeability Prediction.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China.

-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by -(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their characterization and further advancement.

View Article and Find Full Text PDF

Purpose Of Review: Complex Regional Pain Syndrome (CRPS) is a neuropathic pain disorder characterized by pain disproportionate to the inciting event that is constant for an extended duration. Numerous treatment options for this condition have been explored with unsatisfactory results in many cases. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist typically used as an anesthetic and analgesic, presents a promising potential treatment for CRPS in patients who fail to respond to traditional therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!