Enzymic transformations of steroids by microorganisms.

Adv Enzymol Relat Subj Biochem

Published: July 2000

Download full-text PDF

Source
http://dx.doi.org/10.1002/9780470122655.ch8DOI Listing

Publication Analysis

Top Keywords

enzymic transformations
4
transformations steroids
4
steroids microorganisms
4
enzymic
1
steroids
1
microorganisms
1

Similar Publications

Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.

Nat Chem Biol

January 2025

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.

View Article and Find Full Text PDF

Trehalose decorated nanostructures stabilize combined cross-linked enzyme aggregates (Combi-CLEAs) of β-galactosidase and glucose isomerase.

Int J Biol Macromol

January 2025

Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA. Electronic address:

Combined cross-linked enzyme aggregates (Combi-CLEAs) of β-Galactosidase (β-Gal) and Glucose Isomerase (GI) allow the transformation of d-lactose to lactose-fructose syrup through one-pot cascade biocatalytic reactions. Despite its promise, the low thermostability of β-Gal and high-temperature demands for GI limits this application. Trehalose is a protein-stabilizing disaccharide which has been utilized in immobilized enzyme systems to enhance protein thermostability.

View Article and Find Full Text PDF

Mimicking the reactivity of drug metabolites: Biomolecule conjugation of an electrochemically-generated, reactive oxidation product of the antibiotic minocycline.

J Pharm Biomed Anal

January 2025

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany. Electronic address:

Minocycline is an antibiotic of the tetracycline family which is widely used to treat a range of medical conditions. Although it has been in use for more than 50 years, little information is available on its metabolism in the human body. In this study, we simulate the biotransformation of minocycline by means of electrochemistry coupled to mass spectrometry.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.

View Article and Find Full Text PDF

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!