N-Glycosylation, biosynthesis and degradation of dipeptidylpeptidase IV (EC 3.4.14.5) (DPP IV) were comparatively studied in primary cultured rat hepatocytes and Morris hepatoma 7777 cells (MH 7777 cells). DPP IV had a molecular mass of 105 kDa in rat hepatocytes and of 103 kDa in MH 7777 cells as assessed by SDS/PAGE under reducing conditions. This difference in molecular mass was caused by differences in covalently attached N-glycans. DPP IV from hepatoma cells contained a higher proportion of N-glycans of the oligomannosidic or hybrid type and therefore migrated at a slightly lower molecular mass. In both cell types DPP IV was initially synthesized as a 97-kDa precursor which was completely susceptible to digestion with endo-beta-N-acetylglucosaminidase H converting the molecular mass to 84 kDa. The precursor was processed to the mature forms of DPP IV, glycosylated with N-glycans mainly of the complex type with a half-life of 20-25 min. The transit of newly synthesized DPP IV to the cell surface displayed identical or very similar kinetics in both cell types with the major portion of DPP IV appearing at the cell surface after 60 min. DPP IV molecules were very slowly degraded in hepatocytes as well as in hepatoma cells with half-lives of approximately 45 h. Inhibition of oligosaccharide processing with 1-deoxymannojirimycin led to the formation of DPP IV molecules containing N-glycans of the oligomannosidic type. This glycosylation variant was degraded with the same half-life as complex-type glycosylated DPP IV. By contrast, inhibition of N-glycosylation with tunicamycin resulted into rapid degradation of non-N-glycosylated DPP IV molecules in both cell types. Non-N-glycosylated DPP IV could not be detected at the cell surface indicating an intracellular proteolytic process soon after biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1992.tb17404.x | DOI Listing |
J Gen Physiol
March 2025
Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.
View Article and Find Full Text PDFCells
December 2024
Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany.
Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
Background And Aim: Pancreatic and hepatobiliary cancers are increasing in prevalence and contribute significantly to cancer-related mortality worldwide. Emerging therapeutic approaches, particularly immunotherapy, are gaining attention for their potential to harness the patient's immune system to combat these tumors. Understanding the role of immune cells in the tumor microenvironment (TME) and their metabolic reprogramming is key to developing more effective treatment strategies.
View Article and Find Full Text PDFCells
December 2024
Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China.
Amyotrophic lateral sclerosis (ALS), commonly known as motor neuron disease, is a neurodegenerative disorder characterized by the progressive degeneration of both upper and lower motor neurons. This pathological process results in muscle weakness and can culminate in paralysis. To date, the precise etiology of ALS remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!