Dynorphin A-(1-13)-Tyr-Leu-Phe-Asn-Gly-Pro (Dyn Ia; 1-8 nmol) injected intracerebroventricularly in the mouse produces two independent behavioral effects: (1) a norbinaltorphimine (kappa opioid antagonist)-reversible analgesia in the acetic acid-induced writhing test and (2) motor dysfunction characterized by wild running, pop-corn jumping, hindlimb jerking and barrel rolling and antagonized by the irreversible phencyclidine (PCP) and sigma (sigma) receptor antagonist, metaphit and the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, dextromethorphan and ketamine. The specific involvement of the PCP receptor in the motor effects of Dyn Ia is supported by the direct competitive interaction of the peptide with the binding of [3H]MK-801 (Ki: 0.63 microM) and [3H]TCP (Ki: 4.6 microM) to mouse brain membrane preparations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(92)90994-kDOI Listing

Publication Analysis

Top Keywords

kappa opioid
8
motor effects
8
selective involvement
4
involvement kappa
4
opioid phencyclidine
4
phencyclidine receptors
4
receptors analgesic
4
analgesic motor
4
effects dynorphin-a-1-13-tyr-leu-phe-asn-gly-pro
4
dynorphin-a-1-13-tyr-leu-phe-asn-gly-pro dynorphin
4

Similar Publications

Pharmacological Characterization of the Novel Selective Kappa Opioid Receptor Agonists 10-Iodo-Akuammicine and 10-Bromo-Akuammicine in Mice.

Neuropharmacology

January 2025

Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA. Electronic address:

Akuammicine (AKC), an indole alkaloid, is a kappa opioid receptor (KOR) full agonist with a moderate affinity. 10-Iodo-akuammicine (I-AKC) and 10-Bromo-akuammicine (Br-AKC) showed higher affinities for the KOR with K values of 2.4 and 5.

View Article and Find Full Text PDF

Neurobiological mechanisms of nicotine's effects on feeding and body weight.

Neurosci Biobehav Rev

January 2025

Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China. Electronic address:

Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure.

View Article and Find Full Text PDF

Background: Anrikefon (HSK21542), a potent and selective peripheral kappa opioid receptor (KOR) agonist developed by Haisco, effectively blocks pain and itch signals.

Aim: To develop a population pharmacokinetic (PK) model for anrikefon and conduct exposure-response (E-R) analysis for safety and efficacy in postoperative pain patients.

Method: The Population PK analysis uses NONMEM software with data from six trials.

View Article and Find Full Text PDF

TEMPORARY REMOVAL: Targeting the kappa opioid receptor for analgesia and antitumour effects.

Br J Anaesth

January 2025

Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA. Electronic address:

The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.

View Article and Find Full Text PDF

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Nat Chem Biol

January 2025

The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!