Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. Electronic address:
Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pain Management, Qilu Hospital of Shandong University, 107# West Wenhua Road, Jinan, Shandong 250012, China. Electronic address:
This investigation represents a pioneering effort to examine the therapeutic effects of PCB specifically in the context of CFA-induced mice, as well as to elucidate the underlying mechanisms that facilitate such effects. Our study utilized advanced methodologies, namely high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS)-based metabolomics, alongside comprehensive multivariate data analysis, to identify a distinctive metabolic profile associated with acute inflammation. Through our analyses, we discovered that several potential metabolites were significantly implicated in a variety of critical metabolic pathways.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA. Electronic address:
Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this exploratory study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive-Behavioral Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways.
View Article and Find Full Text PDFGenomics
January 2025
Anhui University of Science and Technology, Huainan 232000, China. Electronic address:
Background: Systemic Lupus Erythematosus (SLE) is a typical autoimmune disease characterized by a complex pathogenesis and a strong genetic predisposition. The study of inflammatory response in SLE monocytes is not very clear, and exploring the inflammatory factors of monocytes is beneficial to discover new diagnostic targets.
Results: Using scRNA-seq technology, we obtained the quantitative changes in circulating immune cells and various cellular immune metabolic profiles between SLE patients and healthy volunteers.
Environ Pollut
January 2025
Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China. Electronic address:
Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!