Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3181/00379727-98-24080 | DOI Listing |
J Biomed Mater Res B Appl Biomater
February 2025
Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.
Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.
View Article and Find Full Text PDFGels
January 2025
Nuclear Chemical Engineering Study Program, Polytechnic Institute of Nuclear Technology-BRIN, Yogyakarta 55281, Central Java, Indonesia.
Decommissioning of nuclear facilities can be performed in stages. One of the stages and processes in decontamination is the decontamination process before dismantling or facility area recovery activities. Decontamination can be performed using various methods, primarily physical and chemical.
View Article and Find Full Text PDFRSC Adv
January 2025
Kunming Metallurgical Research Institute Co., Ltd Kunming 650000 China.
Scandium (Sc) extraction from iron and aluminum waste is a promising technique for the recycling and valorization of laterite nickel ore waste. Iron and aluminum waste is one source of scandium during preparation of nickel and cobalt hydroxide by wet smelting of laterite nickel ore. The content of Sc is notably higher than that of the raw materials, as the element is enriched in the iron and aluminum waste.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Chemistry, Institute of Technical Education and Research (FET), Siksha 'O' Anusandhan Deemed to be University, Khandagiri Square, Bhubaneswar-751030, Odisha, India. Electronic address:
Deep eutectic solvents (DESs) are eco-friendly leaching agents which have emerged as potential candidate for recovery of valuable metals from spent LIBs (lithium-ion batteries). Earlier reports show use of more mount of chemicals, long leaching duration and less efficiency. The present work has been carried out to observe the leaching efficiency of two DES-water blend systems such as ChCl:CA(2:1) +30% HO and ChCl:MA(1:1)+20% HO for the leaching of Li and Co from cathodic material of spent LIBs using design of experiments and optimization through CCD (central composite design) of Response surface methodology(RSM) approach.
View Article and Find Full Text PDFFood Chem
January 2025
Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:
This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!