In vitro studies of multidrug-resistant cell lines have shown that a membrane protein, the P-glycoprotein, is responsible for resistance to a wide range of structurally and functionally dissimilar anti-cancer drugs. The amino-acid sequence of P-glycoprotein (Pgp) indicates two consensus sequences for ATP binding and the purified protein has been reported to possess a low level of ATPase activity. As part of our goal to further characterize the ATPase activity of P-glycoprotein, we have developed a procedure for rapid partial purification of the protein in a highly active form. Plasma membrane vesicles from multidrug-resistant CHRC5 Chinese hamster ovary cells were subjected to a two-step procedure involving selective extraction with different concentrations of the zwitterionic detergent CHAPS. The resulting extract was enriched in P-glycoprotein (around 30% pure) and displayed an ATPase activity (specific activity 543 nmol mg-1 min-1) that was not found in a similar preparation from drug-sensitive cells. The ATPase specific activity was over 10-fold higher than that previously reported for immunoprecipitated Pgp and 280-fold higher than that of immunoaffinity-purified Pgp. This ATPase activity could be distinguished from that of other ion-motive ATPases and membrane-associated phosphatases and is, thus, proposed to be directly attributable to P-glycoprotein. Optimal P-glycoprotein ATPase activity required Mg2+ at an ATP: Mg2+ molar ratio of 0.75:1 and the apparent Km for ATP was 0.88 mM. P-Glycoprotein ATPase could be completely inhibited by vanadate and by the sulfhydryl-modifying reagents N-ethylmaleimide, HgCl2 and p-chloromercuribenzenesulfonate. Certain drugs and chemosensitizers, including colchicine, progesterone, nifedipine, verapamil and trifluoperazine, produced up to 50% activation of P-glycoprotein ATPase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2736(92)90078-z | DOI Listing |
BMC Res Notes
January 2025
Department of Anatomy and Neuroscience, Institute of Medicine, University of Tsukuba, 1-1- 1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
Objective: Reactivity of microglia, the resident cells of the brain, underlies innate immune mechanisms (e.g., injury repair), and disruption of microglial reactivity has been shown to facilitate psychiatric disorder dysfunctions.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, China; Chongqing Key Laboratory of New Drug Delivery System, Chongqing 400038, China. Electronic address:
Background And Aim: Our previous research indicates that sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) dysfunction facilitates the phenotypic transformation of aortic smooth muscle cells (ASMCs) and intensifies aortic aneurysm through the regulation of calcium-dependent pathways and endoplasmic reticulum stress. Our hypothesis is that additional mechanisms are involved in aortic aneurysm and atherosclerosis induced by SERCA2 dysfunction from the perspective of ASMC phenotypic transformation.
Methods & Results: In SERCA2 dysfunctional mice and their control littermates, ASMCs were isolated to analyze protein expression and cell functions, and angiotensin II was infused into these mice that were backcrossed into LDL receptor deficient background to induce aortic aneurysm and atherosclerosis.
Plant Cell Physiol
January 2025
Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA; Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA. Electronic address:
Vancomycin intermediate-resistant Staphylococcus aureus (VISA) is a pathogen of concern. VraS, a histidine kinase, facilitates the VISA phenotype. Here, we reveal a benzoxazolyl urea (chemical 1) that directly inhibits VraS and enhances vancomycin to below the clinical breakpoint against an archetypal VISA strain, Mu50.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Department of Biology, Duke University, Durham, NC, 27708, USA. Electronic address:
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote concerted response mechanisms remain understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!