Mapping of monoaminergic systems in the brain of the newt Triturus alpestris was achieved with antisera against (1) thyrosine hydroxylase (TH), (2) formaldehyde-conjugated dopamine (DA), and (3) formaldehyde-conjugated serotonin (5-HT). In the telencephalon, the striatum was densely innervated by a large number of 5-HT-, DA- and TH-immunoreactive (IR) fibers; IR fibers were more scattered in the amygdala, the medial and lateral forebrain bundles, and the anterior commissure. In the anterior and medial diencephalon, TH-IR perikarya contacting the cerebrospinal fluid (CSF-C perikarya) were located in the preoptic recess organ (PRO), the organum vasculosum laminae terminalis and the suprachiasmatic nucleus. Numerous TH-IR perikarya, not contacting the CSF, were present in the posterior preoptic nucleus and the ventral thalamus. At this level, DA-IR CSF-C neurons were only located in the PRO. In the posterior diencephalon, large populations of 5-HT-IR and DA-IR CSF-C perikarya were found in the paraventricular organ (PVO) and the nucleus infundibularis dorsalis (NID); the dorsal part of the NID additionally presented TH-IR CSF-C perikarya. Most regions of the diencephalon showed an intense monoaminergic innervation. In addition, numerous TH-IR, DA-IR and 5-HT-IR fibers, originating from the anterior and posterior hypothalamic nuclei, extended ventrally and reached the median eminence and the pars intermedia of the pituitary gland. In the midbrain, TH-IR perikarya were located dorsally in the pretectal area. Ventrally, a large group of TH-IR cell bodies and some weakly stained DA-IR and 5-HT-IR neurons were observed in the posterior tuberculum. No dopaminergic system equivalent to the substantia nigra was revealed. The possible significance of the differences in the distribution of TH-IR and DA-IR neurons is discussed, with special reference to the CSF-C neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00318806 | DOI Listing |
Brain Struct Funct
September 2020
Department of Epidemiology and Public Health and Anatomy and Neurobiology, University of Maryland Baltimore, 10 South Pine Street MSTF 977, Baltimore, MD, 21201, USA.
Thyrotropin-releasing hormone (TRH) has a critical role in the central regulation of thyroid-stimulating hormone (TSH) from the anterior pituitary, and subsequently, thyroid hormone secretion from the thyroid gland. In addition to its role in the regulation of HPT axis, TRH is a potent regulator of prolactin (PRL) secretion by stimulating PRL secretion either directly from lactotrophs or indirectly via its action on the tuberoinfundibular dopamine (TIDA) neurons. In rodents, the TRH neurons which regulate TSH and thyroid hormone secretion, called hypophysiotropic TRH neurons, are in the medial subdivision of the parvicellular paraventricular nucleus (PVN).
View Article and Find Full Text PDFJ Chem Neuroanat
December 2016
Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland.
The present study examines the distribution of tyrosine hydroxylase (TH) immunoreactivity and its morphological relationships with neuropeptide Y (NPY)- and gonadoliberin (GnRH)-immunoreactive (IR) structures in the preoptic area (POA) of the male guinea pig. Tyrosine hydroxylase was expressed in relatively small population of perikarya and they were mostly observed in the periventricular preoptic nucleus and medial preoptic area. The tyrosine hydroxylase-immunoreactive (TH-IR) fibers were dispersed troughout the whole POA.
View Article and Find Full Text PDFPLoS One
October 2014
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary ; Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary.
The mesolimbic reward pathway arising from dopaminergic (DA) neurons of the ventral tegmental area (VTA) has been strongly implicated in reward processing and drug abuse. In rodents, behaviors associated with this projection are profoundly influenced by an orexinergic input from the lateral hypothalamus to the VTA. Because the existence and significance of an analogous orexigenic regulatory mechanism acting in the human VTA have been elusive, here we addressed the possibility that orexinergic neurons provide direct input to DA neurons of the human VTA.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
October 2011
Neuroendocrine Organization Laboratory, Lake Erie College of Osteopathic Medicine, 1858 West Grandview Boulevard, Erie, Pennsylvania 16509, USA.
Context: Stress is considered to be a major factor in the regulation of growth. Psychosocial dwarfism, characterized with short stature, delayed puberty, and depression, is typically preceded by psychological harassment or stressful environment. It has been observed that stress suppresses GH secretion, possibly via the attenuation of GHRH secretion.
View Article and Find Full Text PDFNeuroscience
November 2010
Neuroendocrine Organization Laboratory, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA.
Previous studies have demonstrated that catecholaminergic, tyrosine hydroxylase (TH)-immunoreactive (IR) perikarya and fibers are widely distributed in the human hypothalamus. Since TH is the key and rate-limiting enzyme for catecholaminergic synthesis, these IR neurons may represent dopaminergic, noradrenergic or adrenergic neural elements. However, the distribution and morphology of these neurotransmitter systems in the human hypothalamus is not entirely known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!