CD2-mediated T lymphocyte activation requires surface expression of CD3-Ti, the T cell receptor (TCR) for antigen major histocompatibility complex protein. Given the importance of CD3 zeta in TCR signaling, we have directly examined the ability of the CD3 zeta cytoplasmic domain to couple CD2 to intracellular signal transduction pathways. A cDNA encoding a chimeric protein consisting of the human CD3 zeta cytoplasmic domain (amino acid residues 31-142) fused to the CD8 alpha extracellular and transmembrane domains (amino acid residues 1-187) was transfected into a CD2+CD3-CD8- variant of the human T cell line Jurkat. The resulting transfectants expressed the CD8 alpha/CD3 zeta chimeric receptor at the cell surface in the absence of other TCR subunits. Stimulation of these transfectants with anti-T11(2) + anti-T11(3) monoclonal antibodies (mAbs) initiated both a prompt cytosolic free calcium ([Ca2+]i) rise and protein tyrosine kinase activation. Stimulation with either intact anti-T11(2) + anti-T11(3) mAbs or purified F(ab')2 fragments resulted in interleukin 2 (IL-2) secretion. In contrast, control cell lines transfected with a cDNA encoding wild-type CD8 alpha, and thus lacking surface expression of the CD3 zeta cytoplasmic domain, failed to show any [Ca2+]i rise, protein tyrosine kinase activation, or IL-2 secretion after identical stimulation. These data directly establish the CD3 zeta cytoplasmic domain as a necessary and sufficient component of the CD3-Ti complex involved in T lymphocyte activation through CD2. Moreover, they show that CD2 signaling can function in the absence of Fc receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119282 | PMC |
http://dx.doi.org/10.1084/jem.176.1.139 | DOI Listing |
Signal Transduct Target Ther
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
The excessive cytokine release and limited persistence represent major challenges for chimeric antigen receptor T (CAR-T) cell therapy in diverse tumors. Conventional CARs employ an intracellular domain (ICD) from the ζ subunit of CD3 as a signaling module, and it is largely unknown how alternative CD3 chains potentially contribute to CAR design. Here, we obtained a series of CAR-T cells against HER2 and mesothelin using a domain comprising a single immunoreceptor tyrosine-based activation motif from different CD3 subunits as the ICD of CARs.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
Purpose: Immunotherapy emerges as a promising frontier in cancer therapy and prevention. This study investigates the capacity of tumor-antigenic nanoparticles, specifically ovalbumin-tethered spiked virus-like poly(lactic-co-glycolic acid) nanoparticles (OVA-sVLNP), to effectively elicit humoral and cellular immune responses against tumors.
Methods: OVA-sVLNP were synthesized through thiol-maleimide crosslinking using a single emulsion method.
EBioMedicine
November 2024
National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea. Electronic address:
J Investig Med
January 2025
China Regional Research Center, International Center for Genetic Engineering and Biotechnology, Taizhou, Jiangsu, P. R. China.
NKG2D chimeric antigen receptor (CAR)-modified T cells (NKG2D CAR-T cells) have been reported to be preclinically efficient in several tumors, but little is known whether NKG2D CAR-T cells co-expressing IL21 (IL21-NKG2D CAR-T cells) display greater antitumor activity in multiple myeloma (MM). In this study, the lentivirus has been produced for expression of the IL21 sequence linked to the extracellular NKG2D sequence with the signal peptide linked through the CD8α hinge-transmembrane domain to the 4-1BB molecule fused with the CD3-ζ chain signaling domain, and the engineered IL21-NKG2D CAR-T cells and NKG2D CAR-T cells were constructed. The CAR expression on CAR-T cells was assessed by flow cytometry, and the killing effects of CAR-T cells on MM were assessed by the cytotoxicity assay and ELISA assay.
View Article and Find Full Text PDFFront Immunol
October 2024
Group of Advanced Immuno-Regulation (GIRA), Gregorio Marañon Health Research Institute Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Gregorio Marañon, Madrid, Spain.
Introduction: Immunotherapy has revolutionized cancer treatment, and Chimeric Antigen Receptor T cell therapy (CAR-T) is a groundbreaking approach. Traditional second-generation CAR-T therapies have achieved remarkable success in hematological malignancies, but there is still room for improvement, particularly in developing new targeting strategies. To address this limitation, engineering T cells with multi-target universal CARs (UniCARs) based on monomeric streptavidin has emerged as a versatile approach in the field of anti-tumor immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!