There is considerable evidence that on the anterior surface of the heart (which is usually supplied by the left anterior descending and the proximal part of the left circumflex coronary arteries), sympathetic efferent reflexes characterized by tachycardia and/or hypertension predominate following experimental or pathological perturbations. These cardiovascular reflexes are accompanied by an increase in presumed nociceptive afferent traffic and, in pathological condition, by pain. In these experiments, there is generally no effect of vagotomy on afferent nerve traffic, and lower cervical and upper thoracic sympathectomies help provide relief from angina. On the other hand, experimental or pathological perturbations involving the inferior-posterior surface of the heart (supplied by the right and distal parts of the left circumflex coronary arteries), are characterized by vagal efferent reflexes, resulting in bradycardia and/or hypotension. These reflexes are accompanied by an increase in vagal afferent nerve traffic and, in pathological conditions, by pain. In these experiments, vagotomy generally abolishes such cardiovascular reflexes, and lower cervical and upper thoracic sympathectomies are not effective in the relief from angina. Although cardiac sympathetic afferents are unquestionably involved in the central transmission of nociceptive information from the heart, it is also likely that there is a contributing role from the vagus in cardiac pain. It is important experimentally to understand the natural stimulus that gives rise to angina. In the clinical situation, a decrease in coronary blood flow or an increase in the metabolic demands of the myocardium due to increased work are obvious precipitating factors which lead to myocardial ischemia. In the experimental situation, occlusion of the coronary arteries is often used as a stimulus which mimics myocardial ischemia. As people who frequently experience angina have varying degrees of coronary artery disease, it is difficult to accept that the state of the coronary arteries of the normal experimental animal bear any resemblance to the state of the coronary arteries under pathological conditions. That is, the gain of homeostatic reflexes, the basal concentrations of neuroactive substances in the plasma, the myocardium and the afferent terminals, the excitability of the afferents, access of chemical mediators (e.g. bradykinin, 5-HT, adenosine, histamine, prostaglandins, potassium, lactate), to afferents, and the overall function of the animal are all significantly different. We have no idea how control mechanisms have been altered in the person with severe coronary artery disease compared to the normal patient or the "normal" experimental animal.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0306-4522(92)90398-l | DOI Listing |
Circulation
January 2025
Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China (J.D., J.Z., X.X., Y.C., S.S., S.L., L.C., Y.W., L.L., R.G., D.H., X.M., R.Z., H.Y., T.C., J.T., X.L., S.J., J.H., C.F.B.Y.).
Background: Patients with acute myocardial infarction and angiographically obstructive non-culprit lesions are at high risk for recurrent major adverse cardiac events (MACEs). However, it remains largely unknown whether events are due to stenosis severity or due to the underlying high-risk lesion morphology.
Methods: Between January 2017 and December 2021, 1312 patients with acute myocardial infarction underwent optical coherence tomography of all the 3 main epicardial arteries after successful percutaneous coronary intervention.
Tex Heart Inst J
January 2025
Center for Women's Heart and Vascular Health, The Texas Heart Institute, Houston, Texas.
Myocardial bridging is a frequent anomaly of the heart in humans and other animals. A myocardial bridge is typically characterized by the systolic narrowing seen with traditional catheter angiography, but this abnormality is not by itself a sign of ischemia or the need for intervention. In particular, transient spontaneous angina must be corroborated by reproducible narrowing during acetylcholine testing; this narrowing occurs during resting conditions and is responsive to nitroglycerin administration.
View Article and Find Full Text PDFJACC Asia
January 2025
Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Background: Pericoronary adipose tissue attenuation (PCATA) is a novel imaging biomarker of pericoronary inflammation associated with coronary artery disease. Several studies have reported the usefulness of PCATA among people of European ethnicity; however, data are lacking concerning those of Asian ethnicity.
Objectives: This multicenter study aimed to evaluate the effect of PCATA on prognosis in East Asian patients.
JACC Asia
January 2025
Department of Cardiology, Ren Ji Hospital, School of Medicine, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Background: Coronary physiology measured by fractional flow reserve (FFR) is superior to angiography for assessing the efficacy of percutaneous coronary intervention (PCI). Yet, the clinical adoption of post-PCI FFR is limited. Murray law-based quantitative flow ratio (μQFR) may represent a promising alternative, as it can quickly compute FFR from a single angiographic view.
View Article and Find Full Text PDFAm J Forensic Med Pathol
January 2025
From the Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC.
The ossa cordis (OC), or cardiac bone, is a bony structure within the cardiac skeleton of mammals, believed to maintain heart shape during systole and enhance contraction efficiency. Found in large mammals, especially ruminants, and has recently been described in chimpanzees; however, OC has not previously been described in humans. Herein, we present an incidental finding of OC in the heart of a 39-year-old man who suffered a stab wound to chest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!