Download full-text PDF

Source

Publication Analysis

Top Keywords

[developmental defects
4
defects lungs
4
lungs infancy]
4
[developmental
1
lungs
1
infancy]
1

Similar Publications

Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development.

View Article and Find Full Text PDF

Objective: it is well known that during an intentional behavior, the final goal of the action shapes the entire sequence of motor acts. This chained organization has been previously demonstrated to be altered in school-age autistic children, who modulate only the final motor act according to the action goal. Here, we investigate the temporal modulation during the intentional action in three groups of preschoolers: neurotypical, autistic, and non-autistic siblings of autistic children.

View Article and Find Full Text PDF

The ARHGEF40 gene, also known as SOLO, encodes a RhoA-targeting guanine nucleotide exchange factor (GEF) and is currently considered a candidate gene with a potential relationship to disease. Our laboratory has confirmed variants at position p.Arg225 of the ARHGEF40 protein in multiple unrelated individuals with a phenotype including dysmorphic features, congenital anomalies and neurodevelopmental abnormalities.

View Article and Find Full Text PDF

Transcriptomic dynamics and cell-to-cell communication during the transition of prospermatogonia to spermatogonia revealed at single-cell resolution.

BMC Genomics

January 2025

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.

Background: Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is a prevalent condition characterized by defective heart development, causing premature death and stillbirths among infants. Genome-wide association studies (GWASs) have provided insights into the role of genetic variants in CHD pathogenesis through the identification of a comprehensive set of single-nucleotide polymorphisms (SNPs). Notably, 90-95% of these variants reside in the noncoding genome, complicating the understanding of their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!