Additional sex combs (Asx) is a member of the Polycomb group of genes, which are thought to be required for maintenance of chromatin structure. To better understand the function of Asx, we have isolated nine new alleles, each of which acts like a gain of function mutation. Asx is required for normal determination of segment identity. AsxP1 shows an unusual phenotype in that anterior and posterior homeotic transformations are seen in the same individuals, suggesting that AsxP1 might upset chromatin structure in a way that makes both activation and repression of homeotic genes more difficult. Analysis of embryonic and adult phenotypes of Asx alleles suggests that Asx is required zygotically for determination of segment number and polarity. The expression pattern of even-skipped is altered in Asx mutant embryos, suggesting that Asx is required for normal expression of this gene. We have transposon-tagged the Asx gene, and can thus begin molecular analysis of its function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1204931PMC
http://dx.doi.org/10.1093/genetics/130.4.817DOI Listing

Publication Analysis

Top Keywords

asx required
12
additional sex
8
sex combs
8
asx
8
chromatin structure
8
required normal
8
determination segment
8
genetic analysis
4
analysis additional
4
combs locus
4

Similar Publications

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is related to pro-apoptotic and pro-inflammatory conditions generated by Endoplasmic reticulum (ER) stress. This study aimed to determine the effect of Astaxanthin (ASX), as carotenoid with potent antioxidant and anti-inflammatory properties, on serum inflammatory markers, apoptotic factors and ER stress-apoptotic genes in peripheral blood mononuclear cells (PBMCs) of women with PCOS. This randomized, double-blind clinical trial included 56 PCOS patients aged 18-40.

View Article and Find Full Text PDF

Are asymptomatic carriers of OTC deficiency always asymptomatic? A multicentric retrospective study of risk using the UCDC longitudinal study database.

Mol Genet Genomic Med

April 2024

Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Background: Ornithine transcarbamylase deficiency (OTCD) due to an X-linked OTC mutation, is responsible for moderate to severe hyperammonemia (HA) with substantial morbidity and mortality. About 80% of females with OTCD remain apparently "asymptomatic" with limited studies of their clinical characteristics and long-term health vulnerabilities. Multimodal neuroimaging studies and executive function testing have shown that asymptomatic females exhibit limitations when stressed to perform at higher cognitive load and had reduced activation of the prefrontal cortex.

View Article and Find Full Text PDF

In trees, secondary xylem development is essential for the growth of perennial stem increments. Many signals regulate the process of development, but our knowledge of the molecular components involved in signal transduction is still limited. In this study, we identified Attenuation of Secondary Xylem (ASX) knockouts by screening genome-editing knockouts of xylem-expressed receptor-like kinases (RLKs) in Populus.

View Article and Find Full Text PDF

Purpose: Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice.

Methods: Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!