Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1748-1716.1957.tb01517.x | DOI Listing |
Nature
January 2025
Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Identification of rate determining steps concerning catalyst activation and catalytic turnover is key to optimize molecular photocatalysts. In this contribution, femtosecond transient absorption spectroscopy upon variation of temperature and ionic strength yields new insights into the light-driven reactivity of the benchmark molecular photocatalyst, RutpphzRhCp*.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA.
The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.
Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:
One critical aspect of cell proliferation is increased nucleotide synthesis, including pyrimidines. Pyrimidines are synthesized through de novo and salvage pathways. Prior studies established that the mammalian target of rapamycin complex 1 (mTORC1) promotes pyrimidine synthesis by activating the de novo pathway for cell proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!