The brahma (brm) gene is required for the activation of multiple homeotic genes in Drosophila. Loss-of-function brm mutations suppress mutations in Polycomb, a repressor of homeotic genes, and cause developmental defects similar to those arising from insufficient expression of the homeotic genes of the Antennapedia and Bithorax complexes. The brm gene encodes a 1638 residue protein that is similar to SNF2/SWI2, a protein involved in transcriptional activation in yeast, suggesting possible models for the role of brm in the transcriptional activation of homeotic genes. In addition, both brm and SNF2 contain a 77 amino acid motif that is found in other Drosophila, yeast, and human regulatory proteins and may be characteristic of a new family of regulatory proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0092-8674(92)90191-eDOI Listing

Publication Analysis

Top Keywords

homeotic genes
20
brm gene
8
transcriptional activation
8
regulatory proteins
8
homeotic
5
genes
5
brm
5
brahma regulator
4
regulator drosophila
4
drosophila homeotic
4

Similar Publications

The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.

View Article and Find Full Text PDF

Introduction: Homeobox genes are highly conserved and play critical roles in brain development. Recently we have found that mammals have an additional fragment of approximately 20 amino acids in Emx1 and a poly-(Ala)6-7 in Emx2, compared to other amniotes. It has been shown that Emx1 and Emx2 have synergistic actions in the brain development.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

The Homeobox Transcription Factor NKX3.1 Displays an Oncogenic Role in Castration-Resistant Prostate Cancer Cells.

Cancers (Basel)

January 2025

Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA.

Background/objectives: Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is a uniquely targetable disease in that it is fueled by male hormones (androgens) that drive tumorigenesis via the androgen receptor or AR.

View Article and Find Full Text PDF

The HOX gene family encodes for regulatory transcription factors that play a crucial role in embryogenesis and differentiation of adult cells. This highly conserved family of genes consists of thirty-nine genes in humans that are located in four clusters, A-D, on different chromosomes. While early studies on the HOX gene family have been focused on embryonic development and its related disorders, research has shifted to examine aberrant expression of HOX genes and the subsequent implication in cancer prediction and progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!