Download full-text PDF

Source
http://dx.doi.org/10.3171/jns.1957.14.4.0405DOI Listing

Publication Analysis

Top Keywords

technique microscopic
4
microscopic examination
4
examination cerebral
4
cerebral vessels
4
vessels vivo
4
technique
1
examination
1
cerebral
1
vessels
1
vivo
1

Similar Publications

Opportunistic screening is essential to improve the identification of individuals with osteoporosis. Our group has utilized image texture features to assess bone quality using clinical MRIs. We have previously demonstrated that greater heterogeneity of MRI texture related to history of fragility fractures, lower bone density, and worse microarchitecture.

View Article and Find Full Text PDF

Digital PCR (dPCR) has transformed nucleic acid diagnostics by enabling the absolute quantification of rare mutations and target sequences. However, traditional dPCR detection methods, such as those involving flow cytometry and fluorescence imaging, may face challenges due to high costs, complexity, limited accuracy, and slow processing speeds. In this study, SAM-dPCR is introduced, a training-free open-source bioanalysis paradigm that offers swift and precise absolute quantification of biological samples.

View Article and Find Full Text PDF

Background: Optimal selection of anastomosis technique is crucial in colectomy surgeries to ensure success and minimize postoperative complications. Various methods, both manual and stapler-assisted, are employed for intestinal anastomosis. This study aims to compare two surgical methods of intestinal anastomosis through macroscopic and microscopic examination.

View Article and Find Full Text PDF

The aim of this research is to create an automated system for identifying soil microorganisms at the genera level based on raw microscopic images of monocultural colonies grown in laboratory environment. The examined genera are: Fusarium, Trichoderma, Verticillium, Purpureolicillium and Phytophthora. The proposed pipeline deals with unprocessed microscopic images, avoiding additional sample marking or coloration.

View Article and Find Full Text PDF

Diverse analytical techniques are employed to scrutinize microplastics (MPs)─pervasive at hazardous concentrations across diverse sources ranging from water reservoirs to consumable substances. The limitations inherent in existing methods, such as their diminished detection capacities, render them inadequate for analyzing MPs of diminutive dimensions (microplastics: 1-5 μm; nanoplastics: < 1 μm). Consequently, there is an imperative need to devise methodologies that afford improved sensitivity and lower detection limits for analyzing these pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!