Fluoride and phosphatidylserine induced inhibition of cytosolic insulin-degrading activity.

Acta Physiol Pharmacol Ther Latinoam

Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil.

Published: March 1994

Cytosol (C) (100,000 x g/60 min, supernatant) from liver, brain and testis (Wistar male rats) are shown to contain insulin degrading activity (C-IDA). The regulation of C-IDA in these fractions by ligands that activate G protein and PKC were examined C-IDA from liver, brain and testis was inhibited 76%; 64% and 50% by 50 mM F- respectively. Chromatography of C fraction from liver on Sephadex G-50 in presence of 1 M (NH4)2SO4 and 20% (v/v) glycerol (experimental condition to remove guanine nucleotides from G proteins) decreased in about 3-fold aluminum fluoride effect on C-IDA. Mg++ (from 5mM to 10 mM) enhanced fluoride effects by inhibiting fully C-IDA. Phosphatidylserine in presence of ATP completely inhibited C-IDA; this inhibition was 31.3% mediated by a phosphorylation reaction. It is concluded that cytosol from different tissues contain proteins capable to associate ligands as aluminum fluoride and PS to regulate C-IDA. It is proposed a mechanism of protein-protein interaction to modulate C-IDA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

liver brain
8
brain testis
8
c-ida
8
aluminum fluoride
8
fluoride
4
fluoride phosphatidylserine
4
phosphatidylserine induced
4
induced inhibition
4
inhibition cytosolic
4
cytosolic insulin-degrading
4

Similar Publications

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.

View Article and Find Full Text PDF

Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.

View Article and Find Full Text PDF

Diet-Microbiome-ENS connection: Impact of the Cafeteria Diet.

Am J Physiol Gastrointest Liver Physiol

January 2025

Digestive Diseases, Emory University, Atlanta, GA, United States.

The interplay between diet-induced obesity and gastrointestinal dysfunction is an evolving area of research with far-reaching implications for understanding the gutbrain axis interactions. In their study, Ramírez-Maldonado et al. employ a cafeteria (CAF) diet model to investigate the effects on gut microbiota, enteric nervous system (ENS) integrity and function, and gastrointestinal motility in mice.

View Article and Find Full Text PDF

A biomarker framework for liver aging: the Aging Biomarker Consortium consensus statement.

Life Med

February 2024

Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.

In human aging, liver aging per se not only increases susceptibility to liver diseases but also increases vulnerability of other organs given its central role in regulating metabolism. Total liver function tends to be well maintained in the healthy elderly, so liver aging is generally difficult to identify early. In response to this critical challenge, the Aging Biomarker Consortium of China has formulated an expert consensus on biomarkers of liver aging by synthesizing the latest scientific literature, comprising insights from both scientists and clinicians.

View Article and Find Full Text PDF

Improving Spatial Transcriptomics with Membrane-Based Boundary Definition and Enhanced Single-Cell Resolution.

Small Methods

January 2025

Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.

Accurately defining cell boundaries for spatial transcriptomics is technically challenging. The current major approaches are nuclear staining or mathematical inference, which either exclude the cytoplasm or determine a hypothetical boundary. Here, a new method is introduced for defining cell boundaries: labeling cell membranes using genetically coded fluorescent proteins, which allows precise indexing of sequencing spots and transcripts within cells on sections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!