Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1748-1716.1957.tb01399.x | DOI Listing |
J Ethnopharmacol
January 2025
The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China; Xiamen Key Laboratory of Chiral Drugs, Xiamen, China. Electronic address:
Ethnopharmacological Relevance: Pseudostellaria heterophylla (Tài Zǐ Shēn, TZS) is a traditional Chinese medicine with spleen and qi benefits. Its immunomodulatory, anti-fatigue, anti-stress, and lipid metabolism regulation effects have been clinically confirmed, but its role in meibomian gland dysfunction (MGD) is still unclear.
Aim Of The Study: This study aims to investigate the effect and mechanism of action of TZS in treating MGD.
Front Mol Biosci
January 2025
Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.
View Article and Find Full Text PDFNat Commun
January 2025
Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction.
View Article and Find Full Text PDFMetab Eng
January 2025
Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, CN; University of Chinese Academy of Sciences,Beijing, CN. Electronic address:
10-hydroxy-2-decenoic acid (10-HDA), a unique unsaturated fatty acid present in royal jelly, has attracted considerable interest due to its potential medical applications. However, its low concentration in royal jelly and complex conformational structure present challenges for large-scale production. In this study, we designed and constructed a de novo biosynthetic pathway for 10-HDA in Escherichia coli.
View Article and Find Full Text PDFOpen Biol
January 2025
Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku , Tokyo 108-8477, Japan.
Sea urchins, integral to marine ecosystems and valued as a delicacy in Asia and Europe, contain physiologically important long-chain (>C) polyunsaturated fatty acids (PUFA) in their gonads, including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and unusual non-methylene-interrupted fatty acids (NMI-FA) such as 20:2. Although these fatty acids may partially be derived from their diet, such as macroalgae, the present study on has uncovered multiple genes encoding enzymes involved in long-chain PUFA biosynthesis. Specifically, 3 fatty acid desaturases (FadsA, FadsC1 and FadsC2) and 13 elongation of very-long-chain fatty acids proteins (Elovl-like, Elovl1/7-like, Elovl2/5-like, Elovl4-like, Elovl8-like and Elovl6-like A-H) were identified in their genome and transcriptomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!