Localized mutagenesis and evidence for post-transcriptional regulation of MAK3. A putative N-acetyltransferase required for double-stranded RNA virus propagation in Saccharomyces cerevisiae.

J Biol Chem

Section on Genetics of Simple Eukaryotes, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892.

Published: October 1992

The MAK3 gene of Saccharomyces cerevisiae is necessary for the propagation of the L-A double-stranded RNA virus and its satellites, such as M1 that encodes a killer toxin. We cloned the MAK3 gene based on its genetic map position using physically mapped lambda-clones covering nearly all of the yeast genome. The minimal sequence necessary to complement the mak3-1 mutation contained 3 open reading frames (ORFs). Only one (ORF3) was necessary to complement mak3-1. A deletion insertion mutant of ORF3 grew slowly on nonfermentable carbon sources, an effect not due simply to its loss of L-A. Although ORF3 alone is sufficient for MAK3 activity when expressed from an expression vector, in its native context an additional 669 base pairs 3' to the ORF and complementary to the gene for a non-histone protein are necessary for expression, but not for normal steady state transcript levels. This suggests a post-transcriptional control of MAK3 expression by the 3' region. The MAK3 protein has substantial homology with several N-acetyltransferases with consensus patterns h..h.h. . . Y..[HK]GI[AG][KR].Lh. . .h and h.h[DE]. . . .N..A. . .Y . . .GF. . . .. . . .Y . . [DE]G, (h = hydrophobic). Mutation of any of the underlined conserved residues (94GI----AA, 123N----A, 130Y----A, 134GF----SL, 144Y----A, and 149G----A) inactivated the gene, supporting the hypothesis that MAK3 encodes an N-acetyltransferase.

Download full-text PDF

Source

Publication Analysis

Top Keywords

double-stranded rna
8
rna virus
8
saccharomyces cerevisiae
8
mak3 gene
8
complement mak3-1
8
mak3
7
localized mutagenesis
4
mutagenesis evidence
4
evidence post-transcriptional
4
post-transcriptional regulation
4

Similar Publications

Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.

View Article and Find Full Text PDF

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase.

Nucleic Acids Res

January 2025

Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.

Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

Article Synopsis
  • Sir2 is a histone deacetylase that helps maintain the stability of ribosomal RNA genes in budding yeast by preventing DNA breaks from leading to changes in rDNA copy number.
  • It does this by suppressing transcription near issues that arise during DNA replication, which can otherwise provoke double-strand breaks (DSBs) and subsequent DNA repair processes.
  • When Sir2 is absent, increased transcription can lead to DSBs, resulting in unstable rDNA copy numbers and the formation of extrachromosomal DNA, highlighting the importance of Sir2 in maintaining rDNA integrity.
View Article and Find Full Text PDF

Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy.

J Chromatogr A

January 2025

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:

Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!