beta 2-Glycoprotein I (beta 2 GPI), a plasma protein that binds to anionic phospholipids, is composed of five repeating units called a short consensus repeat (SCR), which is found mostly in the regulatory proteins of the complement system. Recently the human beta 2 GPI gene has been assigned to chromosome 17, not to chromosome 1 where most of the genes of the SCR-containing proteins are clustered. In this report, we have isolated a full-length cDNA clone of mouse beta 2 GPI and determined the chromosomal localization of the gene. The amino acid sequence deduced from the nucleotide sequence of mouse beta 2 GPI revealed 76.1% identity with that of human beta 2 GPI. A genetic mapping by in situ hybridization and linkage analysis using 50 backcross mice has shown that the mouse beta 2 GPI gene (designated B2gp1) is located on the terminal portion of the D region of chromosome 11, closely linked to Gfap, and is 18 cM distal to Acrb, extending a conserved linkage group between mouse chromosome 11 and human chromosome 17. On the basis of these results, the evolutionary relationships among the SCR-containing proteins are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0888-7543(92)90022-kDOI Listing

Publication Analysis

Top Keywords

beta gpi
24
mouse beta
16
beta
8
beta 2-glycoprotein
8
human beta
8
gpi gene
8
scr-containing proteins
8
chromosome
6
gpi
6
mouse
5

Similar Publications

The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) effectively treats motor symptoms of advanced Parkinson's disease (PD), with the globus pallidus interna (GPi) commonly targeted. However, its therapeutic mechanisms remain unclear. We employed optogenetic stimulation in the entopeduncular nucleus (EP), the rat homologue of GPi, in a unilateral 6-OHDA lesioned female Sprague Dawley rat model of PD.

View Article and Find Full Text PDF

Synthesis of Glycosylphosphatidylinositol Analogues with an Unnatural -D-Glucosamine-(1→6)--Inositol Motif.

J Carbohydr Chem

April 2024

Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.

Glycosylphosphatidylinositol (GPI) anchors contain a unique α-D-glucosamine-(1→6)--inositol [αGlcN(1,6)Ins] motif in their conserved core structure. To facilitate investigations of the functional roles of this structural motif, two GPI analogues containing unnatural βGlcN(1,6)Ins, instead of αGlcN(1,6)Ins, and an alkyne group at different positions of the GPI core were designed and synthesized. To this end, an orthogonally protected pseudopentasaccharide derivative of GPIs with the βGlcN(1,6)Ins motif was convergently constructed via [3+2] glycosylation and used as the common intermediate to prepare both GPI analogues by streamlined synthetic protocols.

View Article and Find Full Text PDF

The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.

View Article and Find Full Text PDF

Neuronal CD59 isoforms IRIS-1 and IRIS-2 as regulators of neurotransmitter release with implications for Alzheimer's disease.

Alzheimers Res Ther

January 2025

Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden.

We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!