Recent evidence indicates a crucial role for paired box genes in mouse and human embryogenesis. The murine Pax8 gene encodes a sequence-specific transcription factor and is expressed in the developing secretory system as well as in the developing and adult thyroid. This restricted expression pattern suggested involvement of the Pax8 gene in the morphogenesis of the above organs and prompted us to investigate the PAX8 gene in humans. In this report, we describe the isolation and characterization of PAX8 cDNAs from a human adult kidney cDNA library. An open reading frame of 450 amino acids contains the 128 amino acid paired domain at its amino-terminal end. The predicted human and mouse Pax8 proteins show 97.8% conservation and are identical in their paired domains. Two independent cDNA clones reveal differential splicing of the PAX8 transcripts resulting in the removal of a 63 amino acid serine-rich region from the carboxy end of the predicted Pax8 protein. The truncated Pax8 protein becomes more similar to the predicted murine Pax2 protein, that is also expressed during kidney development and lacks the serine rich region. RNAse protection analysis shows the presence of both PAX8 transcripts in human thyroid, kidney and five Wilms' tumors. No truncated Pax8 transcripts could be detected in mouse kidney. In situ hybridization to sections of human embryonic and fetal kidney showed expression of PAX8 in condensed mesenchyme, comma-shaped and S-shaped bodies. In contrast, PAX2 expression was present mainly in the very early stages of differentiation, in the induced, condensing mesenchyme. This restricted expression pattern suggests a specific role for both genes during glomeruli maturation.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.116.3.611DOI Listing

Publication Analysis

Top Keywords

pax8
12
pax8 gene
12
pax8 transcripts
12
paired box
8
thyroid kidney
8
kidney wilms'
8
wilms' tumors
8
restricted expression
8
expression pattern
8
amino acid
8

Similar Publications

Vulvar adenocarcinoma of the intestinal type (VAIt) is a rare subtype of primary vulvar carcinoma, with ∼30 cases documented in the English literature. This study presents 2 new cases of HPV-independent VAIt with lymph node metastasis and discusses their clinical presentation, histopathologic features, and whole exome sequencing (WES) analysis. Both cases exhibited histologic features consistent with VAIt, including tubular, papillary, and mucinous carcinoma components.

View Article and Find Full Text PDF

[Solid, endometrial-like and transitional growth patterns of ovarian high-grade serous carcinoma: a clinicopathological analysis of 25 cases].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.

To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.

View Article and Find Full Text PDF

Background: Anaplastic lymphoma kinase (ALK)-rearranged renal cell carcinoma (ALK-RCC) is a rare molecularly defined tumor entity included in the fifth edition of the World Health Organization Classification of Tumors. It is characterized by rearrangement of the ALK gene with various fusion partner genes, which most commonly results in oncogenic fusion proteins leading to ALK activation.

Case Presentation: A 30-year-old Chinese man underwent partial nephrectomy for a left renal tumor measuring 5 cm in diameter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!