A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ontogeny of peptides in human hypothalamus in relation to sudden infant death syndrome (SIDS). | LitMetric

Ontogeny of peptides in human hypothalamus in relation to sudden infant death syndrome (SIDS).

Prog Brain Res

Laboratoire d'Anatomie Pathologique, Faculté de Médecine Alexis Carrel, Lyon, France.

Published: February 1993

The brains of mammals are not mature at birth, in particular in humans. Growth and brain development are influenced by the hormonal state in which the hypothalamus plays the major regulatory role. The maturation of the hormonal patterns leads to the physiological establishment of chronological variations as revealed by the circadian variations of both hypothalamic peptides and pituitary hormones (as illustrated for hypothalamic-pituitary-thyroid axis by the determination of thyro-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) circadian rhythms in the rat (Jordan et al., 1989)). It has been established that hypothalamic peptide variations are regulated by hormonal feed-back and amine systems, with the maturation of the latter also being dependent upon the whole functional maturation of the brain. Though these systems have been studied in the rat, very little information is currently available with regard to the human brain. The only biochemical or immunohistochemical information published to date concerns either the fetus or the adult. We have studied four main peptidergic systems (somatostatin-releasing inhibiting factor (SRIF), thyrotropin-releasing hormone (TRH), luteinizing hormone-releasing hormone (LHRH) and delta sleep inducing peptide (DSIP) in post-mortem adults and infants and in sudden infant death syndrome (SIDS) brains either by autoradiography and/or immunochemistry of radioimmunology. From a technical point of view, human brain studies display certain pitfalls not present in animal studies. These may be divided into two subclasses: ante- and post-mortem. Ante-mortem problems concern mainly sex, laterality, nutritional and treatment patterns while post-mortem problems concern post-mortem delay and conditions before autopsy and hypothalamic dissection. This might induce dramatic changes in morphological, immunochemical and autoradiographic evaluations. The matching of pathological subjects with controls is particularly difficult in the case of SIDS because of the rapid changes which take place in physiological regulatory processes during the first year of life. Thus, the treatment of hypothalamic tissue samples both for immunochemistry, radioimmunology and autoradiographic studies required techniques which must be rigorously controlled. For example, SRIF studies were carried out with three different antibodies, which gave similar results. The use of different technical procedures as well as different antibodies is discussed. These types of differences might explain, at least in part, the discrepancy observed until now. As previously described in the fetus (Bugnon et al., 1977b; Bouras et al., 1987), we confirmed that in the infant hypothalamic SRIF immunoreactive cell bodies are present in the paraventricular and suprachiasmatic nuclei and in the periventricular area.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0079-6123(08)64571-9DOI Listing

Publication Analysis

Top Keywords

sudden infant
8
infant death
8
death syndrome
8
syndrome sids
8
sids brains
8
thyrotropin-releasing hormone
8
hormone trh
8
human brain
8
immunochemistry radioimmunology
8
problems concern
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!