The present study, utilizing thioglycolamido as the reactive group, describes the synthesis and pharmacology of a new opioid antagonist affinity ligand, 6 beta-thioglycolamido-6-desoxynaltrexone (TAN) and compares TAN with a related known compound, 6 beta-bromoacetamido-6-desoxynaltrexone (BAN). Both compounds were tested for their reversible and irreversible inhibition of [3H]naloxone binding to calf brain membranes. Reversible binding of BAN and TAN had Ki values of 1 x 10(-9) and 1 x 10(-10) M, respectively as determined by log probit plots. Irreversible binding was determined after extensive washing to remove all non-covalently bound ligand. At a concentration of 5 x 10(-8) and 1 x 10(-8) M for BAN and TAN irreversible binding was inhibited 50% of the maximum value. A study of the time course of irreversible inhibition of [3H]naloxone binding revealed that maximal inhibition occurred within 5 min with a concentration of 1 x 10(-7) M of either agent. TAN but not BAN when administered systematically to mice produced an antinociceptive effect as measured by the writhing test. When administered intracerebraventricularly BAN did not block morphine-induced analgesia for more than 2 hr; whereas, with a single ED50 dose of 20 nmoles of TAN i.c.v. morphine-induced analgesia was almost completely blocked for a period of over 24 hr, as determined by the tail flick test. Although the SH group of TAN were required for the covalent interaction with opioid receptors, the site of TAN's interaction appears to involve other than protein SH groups.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00968398DOI Listing

Publication Analysis

Top Keywords

antagonist affinity
8
irreversible inhibition
8
inhibition [3h]naloxone
8
[3h]naloxone binding
8
ban tan
8
irreversible binding
8
morphine-induced analgesia
8
tan
7
ban
5
binding
5

Similar Publications

Engineered ipilimumab variants that bind human and mouse CTLA-4.

MAbs

December 2025

Biotherapeutics and Genetic Medicine, AbbVie, South San Francisco, CA, USA.

Testing of candidate monoclonal antibody therapeutics in preclinical models is an essential step in drug development. Identification of antibody therapeutic candidates that bind their human targets and cross-react to mouse orthologs is often challenging, especially for targets with low sequence homology. In such cases, surrogate antibodies that bind mouse orthologs must be used.

View Article and Find Full Text PDF

Targeting CD84 protein on myeloid-derived suppressor cells as a novel immunotherapy in solid tumors.

Comput Methods Programs Biomed

January 2025

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden. Electronic address:

Background And Objective: Myeloid-derived suppressor cells (MDSCs) are a crucial and diverse group of cells found in the tumor microenvironment (TME) that facilitate progression, invasion, and metastasis within solid tumors. CD84, a homophilic adhesion molecule expressed on MDSCs, plays a critical role in their accumulation and function within the TME. This study aims to investigate the protein-protein interactions of CD84 using molecular dynamics simulations and to explore potential therapeutic strategies targeting these interactions.

View Article and Find Full Text PDF

Structure-Based Rational Design and Evaluation of BET-Aurora Kinase Dual-Inhibitors for Treatment of Cancers.

J Med Chem

January 2025

Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.

Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor , we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors.

View Article and Find Full Text PDF

Previous research indicates that Transforming growth factor beta-3 (TGFβ3) expression levels correlate with breast cancer metastasis, and elevated TGFβ3 levels have been linked with poor overall survival in breast cancer patients. The study used computational methods to examine curcumin's effects on TGFβ3, a chemical with antiviral and anticancer characteristics. The curcumin has low Molecular Weight 368.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a major challenge to global health. Targeting the main protease of the virus (Mpro), which is essential for viral replication and transcription, offers a promising approach for therapeutic intervention. In this study, advanced computational techniques such as molecular docking and molecular dynamics simulations were used to screen a series of antiviral compounds for their potential inhibitory effect on the SARS-CoV-2 Mpro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!