Download full-text PDF

Source
http://dx.doi.org/10.1001/archneurpsyc.1956.02330240057005DOI Listing

Publication Analysis

Top Keywords

environmental change
4
change age
4
age onset
4
onset psychosis
4
psychosis elderly
4
elderly patients
4
environmental
1
age
1
onset
1
psychosis
1

Similar Publications

Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.

View Article and Find Full Text PDF

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Pathways to achieving net zero carbon emissions commonly involve deploying reforestation, afforestation, and bioenergy crops across millions of hectares of land. It is often assumed that by helping to mitigate climate change, these strategies indirectly benefit biodiversity. Here, we modeled the climate and habitat requirements of 14,234 vertebrate species and show that the impact of these strategies on species' habitat area tends not to arise through climate mitigation, but rather through habitat conversion.

View Article and Find Full Text PDF

Androgens are pleiotropic and play pivotal roles in the formation and variation of sexual phenotypes. We show that differences in circulating androgens between the three male mating morphs in ruff sandpipers are linked to 17-beta hydroxysteroid dehydrogenase 2 (HSD17B2), encoded by a gene within the supergene that determines the morphs. Low-testosterone males had higher expression in blood than high-testosterone males, as well as in brain areas related to social behaviors and testosterone production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!