Twenty-four male (12 obese and 12 lean) and 21 female (11 obese and 10 lean) SHR/N-cp rats were fed a diet containing either 54% sucrose or starch for periods of 3-4 months. Rats were killed after a 14-16 h fast and liver enzyme activities were determined in both sex groups. Liver glucose-6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), malic enzyme (ME), phosphofructokinase (PFK), glucokinase (GK), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (per total liver capacity) were significantly affected by phenotype (obese > lean). Arginase and ornithine transcarbamylase levels were analysed only in male rats and were found to be elevated in obese rats as compared to lean littermates. Some of the above changes in enzyme levels were exaggerated by sucrose feeding but not the changes in FBPase, PEPCK, ME and GK (in both sexes) plus AST, arginase and arginine synthase activities in male rats and ALT levels in female rats. Results from SHR/N-cp rats published in this paper were compared to results obtained from LA/N-cp rats published previously. Comparison of the non-diabetic obese LA/N-cp with the diabetic obese SHR/N-cp male shows a greater excess in lipogenic capacity of the liver in the LA/N-cp male rat. The SHR/N-cp obese female also shows a greater liver lipogenic capacity as compared with the obese male SHR/N-cp rat. The results suggest that an adaptation of excessive lipogenesis in the liver of obese rats may be an anti-diabetogenic adaptation resulting in increased glucose conversion to lipids, thus reducing blood glucose levels.
Download full-text PDF |
Source |
---|
Food Funct
September 2014
Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of Sciences, Bratislava, Slovak Republic.
We aimed to analyse the effects of alcohol-free Alibernet red wine extract (AWE) on nitric oxide synthase (NOS) activity and pro-inflammatory markers such as nuclear factor-κB (NFκB) and inducible NOS (iNOS) protein expression in experimental metabolic syndrome. Young 6 week-old male Wistar Kyoto (WKY) and obese, spontaneously hypertensive rats (SHR/N-cp) were divided into control groups and groups treated with AWE (24.2 mg per kg per day) for 3 weeks (n = 6 in each group).
View Article and Find Full Text PDFCurr Diabetes Rev
March 2014
Physicians Committee for Responsible Medicine, 5100 Wisconsin Avenue NW, Suite 400, Washington, DC 20016, USA.
Among the most widely used animal models in obesity-induced type 2 diabetes mellitus (T2DM) research are the congenital leptin- and leptin receptor-deficient rodent models. These include the leptin-deficient ob/ob mice and the leptin receptor-deficient db/db mice, Zucker fatty rats, Zucker diabetic fatty rats, SHR/N-cp rats, and JCR:LA-cp rats. After decades of mechanistic and therapeutic research schemes with these animal models, many species differences have been uncovered, but researchers continue to overlook these differences, leading to untranslatable research.
View Article and Find Full Text PDFHypertens Res
January 2011
Institut für Klinische Pharmakologie und Toxikologie, Charité Centrum für Therapieforschung, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Retinopathy has been increasing in prevalence as a consequence of type 2 diabetes and a cluster of coexisting risk factors characterized as the metabolic syndrome. However, the combined effects of these conditions on the retina are poorly understood. Therefore, we focused on the spontaneously hypertensive corpulent rat (SHR/N-cp), a model with type 2 diabetes, obesity and features of the metabolic syndrome to characterize retinal changes at a structural and functional level.
View Article and Find Full Text PDFJ Physiol Biochem
March 2009
Department of University Sciences (DUSA), Bordeaux 1 University, Bordeaux, France.
In order to better understand the link between obesity and type 2 diabetes, lipolysis and its adrenergic regulation was investigated in various adipose depots of obese adult females SHR/N-cp rats. Serum insulin, glucose, free fatty acids (FFA), triglycerides (TG) and glycerol were measured. Adipocytes were isolated from subcutaneous (SC), parametrial (PM) and retroperitoneal (RP) fat pads.
View Article and Find Full Text PDFLab Invest
March 2006
Department of Pathology, University of Heidelberg, Heidelberg, Germany.
Diabetic nephropathy is the leading cause of end-stage renal disease. Dopamine receptors are involved in the regulation of renal hemodynamics and may play a role in diabetes-induced hyperfiltration. To test this hypothesis, we investigated the renal effect of a dopamine D3 receptor antagonist (D3-RA) in hypertensive type II diabetic SHR/N-cp rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!