The effect of the alpha 2-adrenoceptor agonist clonidine on 3,4-diaminopyridine (3,4-DAP)-evoked [3H]noradrenaline ([32H]NA) release in rat hippocampus slices was studied in the presence or absence (+1 mM EGTA) of extracellular Ca2+. 3H overflow (consisting mainly of unmetabolized [3H]NA) was evoked by addition of 100 microM 3,4-DAP for 10 min to the medium, which always contained 1 microM desipramine. Ligands for L-type voltage-sensitive Ca2+ channels (VSCC) did not affect the evoked [3H]NA release, whereas the preferential N-type VSCC antagonist omega-conotoxin was inhibitory, both in the presence and even more potently in the absence of Ca2+, suggesting an involvement of N-type VSCC in the mechanism of 3,4-DAP-evoked [3H]NA release. In the absence of extracellular Ca2+ the initial Na+ influx, which has been previously proposed to liberate Ca2+ from intracellular stores for the exocytotic process, most probably occurs via N-type VSCC. Clonidine inhibited the 3,4-DAP-evoked [3H]NA release in a concentration-dependent manner, both in the presence and even more potently in the absence of Ca2+; its effects were antagonized by yohimbine. In the presence of extracellular Ca2+ the clonidine effect was not changed by addition of omega-conotoxin. Similar effects of clonidine were found in slices from the rabbit hippocampus. Since the availability of Ca2+ from intracellular stores seems to predominate in the present model, our results lend some support to the suggestion that alpha 2-adrenoceptor activation might affect intracellular mechanisms of Ca2+ homeostasis.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/0922-4106(92)90068-7DOI Listing

Publication Analysis

Top Keywords

extracellular ca2+
16
alpha 2-adrenoceptor
12
[3h]na release
12
n-type vscc
12
ca2+
10
release absence
8
absence extracellular
8
presence potently
8
potently absence
8
absence ca2+
8

Similar Publications

Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Plants deploy cellular Ca2+ elevation as a signal for environmental stress signaling. Extracellular ATP (eATP) is released into the extracellular matrix when cells are wounded. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), a key legume-type lectin receptor, senses and binds eATP and activates Ca2+ signaling.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!