We have investigated excitation-contraction coupling mechanisms associated with the activation of purinoceptors and putative pyrimidinoceptors by assessing the effects of ATP and UTP on cytoplasmic Ca2+ activity ([Ca2+]i), membrane potential (Em) and force in rat mesenteric small arteries. UTP induced a sustained concentration-dependent contractions, closely associated with concentration-dependent increases in [Ca2+]i. Superfusion with 0.1 mM UTP caused a sustained depolarisation of 12 +/- 1 mV (SE, n = 8). In Ca(2+)-free medium, the increase in [Ca2+]i and the contraction obtained with UTP (1 mM) were both transient and were inhibited by prior exposure to noradrenaline (NA). In vessels depolarised with KCl, UTP caused no change in Em, but a sustained increase in force and a transient increase in [Ca2+]i were induced, leading to an increased force/[Ca2+]i ratio. Similar effects on [Ca2+]i, Em and force were observed with ATP; but the effect of ATP on force was transient, whereas the effect on [Ca2+]i and Em declined only slowly. There was no crosstachyphylaxis between the responses to ATP and UTP: in the presence of 1 mM of either, the other drug induced contractions in low concentrations, as if they acted through distinct receptors. The results suggest that both UTP and probably ATP release intracellular Ca2+, possibly from the stores emptied by NA. The sustained response to UTP appears to be due to an influx of extracellular Ca2+. UTP but not ATP was found to enhance the force-generating effect of [Ca2+]i.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000158955 | DOI Listing |
Pharmacol Ther
January 2025
Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:
The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells.
View Article and Find Full Text PDFUnlabelled: Guanosine triphosphate (GTP) is essential for macromolecular biosynthesis, and its intracellular levels are tightly regulated in bacteria. Loss of the alarmone (p)ppGpp disrupts GTP regulation in , causing cell death in the presence of exogenous guanosine and underscoring the critical importance of GTP homeostasis. To investigate the basis of guanosine toxicity, we performed a genetic selection for spontaneous mutations that suppress this effect, uncovering an unexpected link between GTP synthesis and glycolysis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan. Electronic address:
Radiation-resistant bacteria are of great application potential in various fields, including bioindustry and bioremediation of radioactive waste. However, how radiation-resistant bacteria combat against invading phages is seldom addressed. Here, we present a series of crystal structures of a sensor and an effector of the cyclic oligonucleotide-based anti-phage signaling system (CBASS) from a radioresistant bacterium Deinococcus wulumuqiensis.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768.
View Article and Find Full Text PDFJDS Commun
November 2024
Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
Assessing transfer of passive immunity (TPI) is a critical management strategy to evaluate colostrum management and feeding; however, variability in hemoconcentration or serum or plasma volume in calves might influence TPI assessment. The objectives of this study were to (1) describe the variability in hemoconcentration as well as TPI in Holstein calves in New York State and (2) describe the effect of adjusting total protein (TP) for the degree of hemoconcentration by applying a sample average proportion of plasma in blood (PP) on TPI assessment. Records of TP and PP from 703 Holstein calves 1 to 9 d of age from 19 commercial dairy farms were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!