Recent advances in ultrafast infrared spectroscopy are described, including experimental details and fundamental limitations. The utility of this technique is illustrated with two recent examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1329200 | DOI Listing |
We report on a multi-watt, high-repetition-rate picosecond 1.7 µm Tm-doped fiber (TDF) laser amplification system. The seed oscillator is a figure-9 passively mode-locked TDF laser, which delivers a pulse train with a center wavelength of 1738nm and a fundamental repetition rate of ∼85 MHz.
View Article and Find Full Text PDFSci Rep
January 2025
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.
Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-590 Łódź, Poland.
Photocycloreversion reactions of three diarylethene derivatives whose structures differ only in the placement of two sulfur atoms in the cyclopentene rings are investigated. Despite the minuscule differences between the molecules, both the yields and times of the photoreactions vary considerably. Using UV-vis and infrared femtosecond spectroscopy and quantum chemical dynamics simulations, we elucidate the relationships among the quantum yield, electronic and vibrational relaxation time, and structural properties of the dithienylethene photoswitches.
View Article and Find Full Text PDFSci Adv
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
A multifunctional near-infrared fluorescent probe (Sycy) is synthesized by the one-step condensation reaction of syringaldehyde and tricyanofuran. Sycy can detect HSO within 150 s in the red wine and sugar samples with a low detection limit of 3.5 μM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!