A 34-year-old Japanese male had leg pain, edema of the legs, hypohidrosis, whorl-like opacities of the bilateral cornea, bilateral subcapsular cataracts, and chest discomfort on exercise. He had no characteristic angiokeratomas but did have telangiectases. The electrocardiogram revealed high voltage. The echocardiogram revealed mild mitral regurgitation. The alpha-galactosidase A activity in cultured lymphoblasts was deficient (0.5 nmol/h/mg protein). Electron microscopic examination of the skin revealed lamellar cytoplasmic inclusions in the endothelial cells, pericytes, and fibroblasts. He had a G--> A transition at nucleotide 982 in the coding sequence of the alpha-galactosidase A gene which resulted in a glycine to arginine amino acid substitution at residue 328. His uncle also had leg pain, edema of the legs, hypohidrosis, and chest pain on exercise. He had no characteristic angiokeratomas but did have telangiectases. Cardiovascular examination revealed hypertrophic cardiomyopathy and stenoses of coronary arteries. Electron microscopic examination of the skin revealed lamellar cytoplasmic inclusions in the endothelial cells, pericytes, and fibroblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1346-8138.1992.tb03266.x | DOI Listing |
Int J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Anderson-Fabry disease is a hereditary, progressive, multisystemic lysosomal storage disorder caused by a functional deficiency of the enzyme α-galactosidase A (α-GalA). This defect is due to mutations in the gene, located in the long arm of the X chromosome (Xq21-22). Functional deficiency of the α-GalA enzyme leads to reduced degradation and accumulation of its substrates, predominantly globotriaosylceramide (Gb3), which accumulate in the lysosomes of numerous cell types, giving rise to the symptomatology.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Anderson-Fabry (or Fabry) disease is a rare lysosomal storage disorder caused by a functional deficiency of the enzyme alpha-galactosidase A. The partial or total defect of this lysosomal enzyme, which is caused by variants in the gene, leads to the accumulation of glycosphingolipids, mainly globotriaosylceramide in the lysosomes of different cell types. The clinical presentation of Fabry disease is multisystemic and can vary depending on the specific genetic variants associated with the disease.
View Article and Find Full Text PDFBiomolecules
January 2025
National Research Center "Kurchatov Institute", 123182 Moscow, Russia.
The methylotrophic yeast belongs to the group of homothallic fungi that are able to spontaneously change their mating type by inversion of chromosomal DNA in the MAT locus region. As a result, natural and genetically engineered cultures of these yeasts typically contain a mixture of sexually dimorphic cells that are prone to self-diploidisation and spore formation accompanied by genetic rearrangements. These characteristics pose a significant challenge to the development of genetically stable producers for industrial use.
View Article and Find Full Text PDFCells
January 2025
Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China.
Glycosylation plays a critical role in various biological processes, yet identifying specific glycosyltransferase substrates remains a challenge due to the complexity of glycosylation. Here, we employ proximity labeling with biotin ligases BASU and TurboID to map the proximitome of MGAT3, a glycosyltransferase responsible for the biosynthesis of the bisecting GlcNAc structure, in HEK293T cells. This approach enriched 116 and 189 proteins, respectively, identifying 17 common substrates shared with bisecting GlcNAc-bearing proteome obtained via intact glycopeptide enrichment methods.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!