A GnRH-binding inhibitor (GnRH-BI) was recently purified from bovine ovaries. On the basis of amino acid composition and partial sequence analysis this antigonadotropic GnRH-BI was identified as histone H2A. In the present study the mechanism for the antigonadotropic action of histone H2A was examined and compared to that of GnRH and poly-L-lysine. The potential sites examined were the receptor-coupled pathway of second message synthesis including receptor binding of hormone, G protein activation, and adenylyl cyclase activation. Histone H2A inhibited (ID50 = 2 microM) the binding of hCG by membrane receptors from luteinized rat ovaries in a noncompetitive and dose-dependent manner. The binding of FSH by membrane receptors from immature rat ovaries was not inhibited by histone H2A. Binding of GnRH by pituitary membrane receptors was inhibited by histone H2A, and the ID50 of 8 microM was similar to that previously observed for GnRH binding sites in rat ovarian membranes. No high-affinity binding of histone H2A by rat ovarian membranes was detected. Near-maximal doses of histone H2A (7 microM), poly-L-lysine (10 microM), and GnRH (1 microM) inhibited LH-stimulated cAMP production in isolated rat luteal cells. Inhibition by H2A and poly-L-lysine was larger than by GnRH. Furthermore, histone H2A and poly-L-lysine inhibited cholera toxin (CT)-stimulated cAMP production, but GnRH did not. Like GnRH, neither histone H2A nor poly-L-lysine inhibited forskolin (FK)-stimulated cAMP production. In isolated rat granulosa cells, histone H2A and poly-L-lysine inhibited FSH-, CT-, and FK-stimulated cAMP production.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod46.6.1021DOI Listing

Publication Analysis

Top Keywords

histone h2a
40
h2a poly-l-lysine
16
h2a
12
membrane receptors
12
camp production
12
poly-l-lysine inhibited
12
histone
10
antigonadotropic action
8
id50 microm
8
rat ovaries
8

Similar Publications

Background: An accurate diagnosis of septic versus reactive or autoimmune arthritis remains clinically challenging. A multi-omics strategy comprising metagenomic and proteomic technologies were undertaken for children diagnosed with presumed septic arthritis to advance clinical diagnoses and care for affected individuals.

Methods: Twelve children with suspected septic arthritis were prospectively enrolled to compare standard of care tests with a rapid multi-omics approach.

View Article and Find Full Text PDF

Neutrophil extracellular traps in tumor metabolism and microenvironment.

Biomark Res

January 2025

Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.

Neutrophil extracellular traps (NETs) are intricate, web-like formations composed of DNA, histones, and antimicrobial proteins, released by neutrophils. These structures participate in a wide array of physiological and pathological activities, including immune rheumatic diseases and damage to target organs. Recently, the connection between NETs and cancer has garnered significant attention.

View Article and Find Full Text PDF

Background: This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses.

View Article and Find Full Text PDF

High-resolution analysis of human centromeric chromatin.

Life Sci Alliance

April 2025

National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA

Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays.

View Article and Find Full Text PDF

SRF and CBP jointly regulate integrin β6 overexpression in head and neck squamous cell carcinomas.

Cell Signal

January 2025

Department of Basic Medical Science & Department of Stomatology, School of Medicine, Xiamen University, Xiamen, Fujian, China. Electronic address:

Overexpression of integrin β6 (ITGB6) is crucially linked to the invasion and metastasis of head and neck squamous cell carcinoma (HNSCC). The molecular mechanisms driving ITGB6 upregulation in HNSCC are not well understood. Our study comprehensively analyzed the transcriptional regulation and epigenetic modification mechanisms affecting ITGB6 transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!