1. Transmitter glutamate is thought to be derived from glutamine via cleavage by glutaminase. NH+4 inhibits glutaminase. Therefore the decrease of glutamatergic excitatory synaptic transmission by NH+4 was thought to be due to the inability of glutamine to serve as precursor for glutamate. However, in cat spinal cord, NH+4 abolished excitatory synaptic transmission by a conduction block for action potentials in presynaptic terminals. The conduction block prevented inferences as to the effects of NH+4 on the availability of glutamate for synaptic transmission. This study reexamines the effects of NH+4 on glutamatergic excitatory synaptic transmission in cerebellar neurons in tissue culture. 2. Whole-cell patch voltage-clamp recordings were obtained from presumed Purkinje cells. Extracellular stimulation of presumed granule cells produced mono- and polysynaptic excitatory postsynaptic currents (EPSCs). In addition, presumed Purkinje cells showed spontaneous EPSCs that occurred independently of the addition of tetrodotoxin (TTX) or Cd2+ to the extracellular solution. 3. NH+4 (5-10 mM) abolished evoked mono- and polysynaptic EPSCs without abolishing spontaneous EPSCs and without significant effects on action currents in the Purkinje cell soma. 4. Increase of K+ in the extracellular solution to 10-12 from 5 mM abolished evoked EPSCs without abolishing spontaneous EPSCs and without significant effects on action currents in the Purkinje cell soma. 5. Mixtures of NH+4 and K+, with each ion in a concentration insufficient to affect evoked EPSCs when given alone, abolished evoked EPSCs when the sum of NH+4 and K+ exceeded 10-12 mM. 6. Increase of intracellular pH by trimethylamine had no effect on evoked and spontaneous EPSCs.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1992.68.1.93 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!