We used methylazoxymethanol-acetate (MAM), a potent alkylating agent, to produce microencephaly in offspring by injecting it into pregnant rats on day 15 of gestation. Binding activities of central excitatory amino acid receptors were examined in Triton-treated membranes prepared from brains of adult offspring with MAM-induced microencephaly (MAM rats). MAM rats exhibited approximately 40-50% reductions of the wet weights of the cerebral cortex, hippocampus and striatum compared to those in controls. In the cortex and hippocampus of MAM-rats, total bindings of [3H]glutamate (Glu) (which is sensitive to N-methyl-D-aspartate (NMDA) receptor), and strychnine-insensitive [3H]glycine (Gly) and (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne (MK-801; a noncompetitive antagonist of NMDA receptor), were reduced to approximately 40% of those in controls. Similarly, in both regions of MAM rats, total bindings of [3H]kainate and DL-alpha-amino-3-[3H]hydroxy-5-methylisoxazole-4-propionic acid (an agonist of quisqualate receptors), were reduced to approximately 35-50% of those in controls. However, total bindings of these radioligands in the striatum of MAM rats were more than 65% of those in controls, despite the significant loss of striatum mass. However, specific bindings of radioligands in the striatum of MAM rats were elevated by more than 60% of those in controls, and Scatchard analysis revealed that elevations of [3H]Glu, [3H]Gly and [3H]MK-801 bindings were due to a significant increase in the densities of binding sites, with their affinities remaining unaltered. Spatial recognition ability examined by an 8-armed radial maze task was markedly impaired compared to those in controls. These results suggest that the proliferation of neurons bearing excitatory amino acid receptors (EAA) in the striatum is less affected by MAM treatment on day 15 of gestation than that in the cortex and hippocampus in spite of drastic weight loss in these brain regions. The significant reduction of EAA receptors in the cortex and hippocampus may be involved in the impairment of spatial memory observed in MAM-treated rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-0102(05)80003-3DOI Listing

Publication Analysis

Top Keywords

mam rats
20
cortex hippocampus
16
excitatory amino
12
amino acid
12
acid receptors
12
total bindings
12
striatum mam
12
rats
8
day gestation
8
compared controls
8

Similar Publications

Anastomotic leak occurrence is a severe complication after colorectal surgery. Considering the difficulty of treating these leaks and their impact on patient care, there is a strong need for an efficient prevention strategy. We evaluated a combination of extracellular vesicles (EVs) from rat adipose-derived stromal cells with a thermoresponsive gel, Pluronic® F127 (PF-127) to prevent anastomotic leaks.

View Article and Find Full Text PDF

Schizophrenia is a kind of neurodevelopmental mental disorder in which patients begin to experience changes early in their development, typically manifesting around or after puberty and has a fluctuating course. Environmental disturbances during adolescence may be a risk factor for schizophrenia-like deficits. As a better treatment option, preventive intervention prior to schizophrenia may be more beneficial than direct treatment.

View Article and Find Full Text PDF

Schizophrenia is a mental disorder characterized by cognitive impairments, specifically deficits in social recognition memory (SRM). Abnormal hippocampal neurogenesis has been implicated in these deficits. Due to the pathogenetic heterogeneity of schizophrenia, studying the hippocampal neurogenesis and SRM in two models with prenatal and postnatal defects could enhance our understanding of the developmental aspects of the biological susceptibility to schizophrenia.

View Article and Find Full Text PDF

Particulate matter induced cognitive impairments via endoplasmic reticulum stress-mediated damage to mitochondria-associated endoplasmic reticulum membranes in immature rats.

Toxicology

December 2024

Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China. Electronic address:

Article Synopsis
  • Particulate matter (PM) exposure negatively impacts cognitive function and is linked to neurodevelopmental disorders, particularly in early childhood.
  • The study focused on how PM exposure affects Mitochondria-associated endoplasmic reticulum membranes (MAMs) and leads to endoplasmic reticulum stress (ERS), resulting in neuronal damage and cognitive impairments in young rats.
  • Findings showed increased markers of ERS and disrupted MAM structure in PM-exposed rats, but treatment with the ERS inhibitor 4-PBA helped restore MAM function and improve cognitive abilities, suggesting potential prevention strategies for cognitive issues related to PM exposure.
View Article and Find Full Text PDF

Schizophrenia (SCZ) is a complex neuropsychiatric disorder characterized by positive, negative, and cognitive symptoms. The neurodevelopmental methylazoxy-methanol acetate (MAM) rodent model replicates key neurobiological features of SCZ which includes hyperdopaminergic states in the ventral tegmental area (VTA) and cognitive deficits. Typical and atypical antipsychotics are primarily effective in treating the positive symptoms of SCZ but often fall short of addressing cognitive deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!