Endothelin-1 (Et) has profound effects on glomerular microcirculation and mesangial cell contraction. A parameter of mesangial cell contraction was examined by measuring myosin light chain phosphorylation (MLCP) in glomerular mesangial cells in the presence and absence of a newly developed endothelin-1 receptor antagonist (EtA). Addition of Et alone (10 nM) caused a marked increase in MLCP, which, on average, rose by 53 +/- 6% above the level in cells exposed to vehicle (P less than 0.0005). This effect was shown to continue for at least one hour; MLCP at 60 minutes was 64 +/- 12% higher than controls, (P less than 0.025), constituting a unique observation of an in vitro parameter which parallels the characteristic in vivo effect of Et. Treatment of cells with EtA virtually abolished this Et-induced increase in MLCP, which rose by only 2 +/- 3% and -1 +/- 4% for doses of EtA of 44 nM and 66 nM, respectively. Examination of the intracellular calcium concentration, [Ca2+]i, revealed that EtA almost completely abolished the transient increase in [Ca2+]i evoked by Et and also suppressed the early portions of the sustained increase in [Ca2+]i. EtA was ineffective in abolishing [Ca2+]i increase in response to arginine vasopressin. Finally, to evaluate EtA's efficacy in a pathophysiologic setting, we also studied mesangial cells exposed to cyclosporine (Cs). Exposure of mesangial cells to Cs (10(-5) M) for 60 minutes caused a significant increase in MLCP, on average, by 38 +/- 6% above control (P less than 0.0005), while cells exposed to Cs in the presence of EtA increased MLCP significantly less, by only 15 +/- 9%. These data provide further evidence for Et's long-lasting cellular actions, and demonstrate inhibitory effects of an Et receptor antagonist after direct cellular exposure to Et and also after Cs exposure, a pathophysiologic setting which likely involves Et.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ki.1992.245 | DOI Listing |
World J Diabetes
January 2025
Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.
Aim: To explore the impact of MIZ on diabetic nephropathy (DN).
Methods: Diabetic mice were created using db/db mice.
The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: IgA nephropathy (IgAN) is the most common primary glomerular disease in China, but its pathogenesis remains unclear. This study aims to explore the regulatory role of the mammalian target of rapamycin (mTOR) signaling pathway in autophagy and mesangial proliferation during renal injury in IgA.
Methods: The activity of mTOR and autophagy was evaluated in kidney samples from IgAN patients and in an IgAN mouse model induced by oral bovine serum albumin and carbon tetrachloride (CCl4) injection.
J Endocrinol Invest
January 2025
Department of Endocrinology, Nanshi Hospital of Nanyang, No. 130, West Zhongzhou Road, Nanyang, 473065, China.
Background: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and has the complex pathogenesis. The previous study reported that protein kinase Bγ (AKT3) was involved in DN progression. Our aim was to explore the detailed mechanisms of AKT3 in DN development.
View Article and Find Full Text PDFBull Exp Biol Med
December 2024
School of Basic Medicine, Gannan Medical University, Ganzhou, China.
Extracellular Ca is the first ligand that has been confirmed to function by activating the calcium-sensing receptor (CaSR), a member of G-protein coupled receptors. CaSR controls not only calcium homeostasis, but also plays a pivotal role in many cellular processes such as cell proliferation and apoptosis; moreover, it is implicated in the development of cardiovascular diseases. TGF-β/Smads signaling pathway is a classical pathway of renal fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!