Nitrovasodilators inhibit thrombin-induced platelet-activating factor synthesis in human endothelial cells.

Biochem Pharmacol

Department of Pathological Biochemistry, Medical Academy, Erfurt, Federal Republic of Germany.

Published: July 1992

AI Article Synopsis

  • Endothelial cells produce platelet-activating factor (PAF) in response to thrombin, which is linked to inflammation and causes blood vessel constriction.
  • Sodium nitroprusside (SNP) and SIN-1 release nitric oxide, promoting blood vessel relaxation and inhibiting platelet clumping by increasing cGMP levels.
  • The study shows that SNP and SIN-1 decrease PAF synthesis in human umbilical vein endothelial cells via inhibition of enzymes involved in the PAF production process.

Article Abstract

In response to inflammatory agents such as thrombin, cultured endothelial cells produce platelet-activating factor (PAF), which has been linked with most inflammatory and immune processes, and is a potent coronary constrictor. Sodium nitroprusside (SNP) and SIN-1 (3-morpholinosydnonimine), which spontaneously release the free radical nitric oxide (NO), cause direct relaxation of blood vessels and inhibition of platelet aggregation by activating soluble guanylate cyclase. In the present study we report that in human umbilical vein endothelial cells (HUVEC) these compounds stimulate the production of cGMP and inhibit thrombin-induced PAF synthesis in a concentration-dependent manner. 8-bromo-cGMP, a permeant non-hydrolysable analogue of cGMP, mimics the inhibitory effect of NO-generating vasodilators. PAF synthesis requires phospholipase A2-mediated hydrolysis of membrane precursors to lyso-PAF, which is in turn converted into PAF by an acetyltransferase. The thrombin-elicited activation of both enzymes is inhibited in a dose-dependent way in HUVEC pretreated with SNP and SIN-1. The inhibitory effect of SNP and SIN-1 on the thrombin-mediated PAF synthesis suggests a new mechanism of action whereby the endogenous NO can affect vascular tone and endothelium-dependent intercellular adhesion. Moreover, PAF production in endothelial cells appears to be an important target for the pharmacological action of nitrovasodilators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(92)90004-3DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
snp sin-1
12
paf synthesis
12
inhibit thrombin-induced
8
platelet-activating factor
8
paf
6
nitrovasodilators inhibit
4
thrombin-induced platelet-activating
4
synthesis
4
factor synthesis
4

Similar Publications

Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment.

Sci Adv

January 2025

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.

View Article and Find Full Text PDF

The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.

View Article and Find Full Text PDF

Background: Inflammation is a driver of thrombosis, but the phenomenon of thromboinflammation has been defined only recently, bringing together the multiple pathways involved. models can support the development of new therapeutics targeting the endothelium and also assess the existing immunomodulatory drugs, such as hydroxychloroquine, in modulating the inflammation-driven endothelial prothrombotic phenotype.

Objectives: To develop a model for thrombin generation (TG) on the surface of human endothelial cells (ECs) to assess pro/antithrombotic properties in response to inflammation.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!