The adenovirus tripartite leader (TPT) 5' untranslated region (5'UTR) allows translation in poliovirus-infected cells, in which the p220 subunit of eukaryotic initiation factor 4F is degraded. This p220-independent translation was investigated by measuring in vitro translation in a reticulocyte lysate of a reporter gene, chloramphenicol acetyltransferase, coupled to the TPT 5'UTR. The p220 subunit was degraded by translation of a foot-and-mouth-disease L-protease construct. Surprisingly, the TPT 5'UTR was dependent on intact p220, as are other naturally capped mRNA species. Translation of encephalomyocarditis virus RNA was p220 independent, as expected from its ability to support internal, cap-independent initiation. In vitro protein-synthesis experiments with purified initiation factors confirmed the dependence of TPT mRNA translation on eukaryotic initiation factor 4F. The relationship between adenovirus TPT-5'UTR-directed translation and poliovirus-induced host cell shut-off is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1992.tb17073.x | DOI Listing |
Proc Natl Acad Sci U S A
July 2009
Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
Competency for DNA replication is functionally coupled to the activation of histone gene expression at the onset of S phase to form chromatin. Human histone nuclear factor P (HiNF-P; gene symbol HINFP) bound to its cyclin E/cyclin-dependent kinase 2 (CDK2) responsive coactivator p220(NPAT) is a key regulator of multiple human histone H4 genes that encode a major subunit of the nucleosome. Induction of the histone H4 transcription factor (HINFP)/p220(NPAT) coactivation complex occurs in parallel with the CDK-dependent release of pRB from E2F at the restriction point.
View Article and Find Full Text PDFJ Biol Chem
December 2003
Molecular Biology Institute, The David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
The human BRCA1 tumor suppressor interacts with transcriptional machinery, including RNA polymerase II (RNA pol II). We demonstrated that interaction with RNA pol II is a conserved feature of BRCA1 proteins from several species. We found that full-length BRCA1 proteins universally fail to activate transcription in classic GAL4-UAS one-hybrid assays and that the activity associated with the human BRCA1 C terminus was poorly conserved in closely related homologs of the gene.
View Article and Find Full Text PDFHum Mol Genet
May 2001
Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, University of Birmingham, The Medical School, Edgbaston, Birmingham B15 2TT, UK.
The von Hippel-Lindau tumour suppressor gene product (pVHL) associates with the elongin B and C and Cul2 proteins to form a ubiquitin-ligase complex (VCBC). To date, the only VCBC substrates identified are the hypoxia-inducible factor alpha subunits (HIF-1alpha and HIF-2alpha). However, pVHL is thought to have multiple functions and the significance of HIF-1alpha and HIF-2alpha regulation for tumour suppressor activity has not been defined.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 1999
Department of Molecular Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
Mutations of von Hippel-Lindau disease (VHL) tumor-suppressor gene product (pVHL) are found in patients with dominant inherited VHL syndrome and in the vast majority of sporadic clear cell renal carcinomas. The function of the pVHL protein has not been clarified. pVHL has been shown to form a complex with elongin B and elongin C (VBC) and with cullin (CUL)-2.
View Article and Find Full Text PDFProtein Expr Purif
February 1997
Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
Protein-mRNA cap interactions represent a critical point for regulating gene expression in vivo. For example, a rapid stimulation of gene expression at the mRNA level is mediated by insulin regulating the availability of functional cap-binding protein (eIF-4E). In addition, several viruses modify cap binding proteins to regulate host vs viral gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!