A permeabilized rat adipocyte model was developed which permitted an examination of: 1) insulin receptor autophosphorylation, 2) phosphorylation of a putative insulin receptor substrate of 160 kDa, pp160, and 3) the dephosphorylation reactions associated with each of these phosphoproteins. Rat adipocytes, preincubated with [32P]orthophosphate for 2 h, were exposed to insulin (10(-7) M) at the time of digitonin permeabilization. Phosphorylation of pp160 and autophosphorylation of the insulin receptor increased as a function of Mn2+ concentration in the media with near maximum responses at 10 mM. Maximum response was at least as large as the intact cell response to 10(-7) M insulin. In contrast, magnesium did not increase phosphorylation of pp160 although an increase in receptor autophosphorylation was observed. Autophosphorylation was preserved at digitonin concentrations of 20-100 micrograms/ml, but pp160 phosphorylation was negligible beyond 40 micrograms/ml. Our previous work demonstrated that the insulin receptor was associated with a phosphotyrosine phosphatase activity in permeabilized adipocytes (Mooney, R., and Anderson, D. (1989) J. Biol. Chem. 264, 6850-6857). The current permeabilized adipocyte model made possible an examination of the effects of phosphotyrosine phosphatase inhibitors, including several divalent metal cations (Zn2+, Co2+, and Ni2+), vanadate, and molybdate on both net phosphorylation of pp160 and autophosphorylation of the insulin receptor. Zn2+ at 100 microM, Ni2+ at 1 mM, and Co2+ at 1 or 5 mM increased insulin-dependent phosphorylation of pp160 at least 5-fold and autophosphorylation 2-fold. At higher concentrations of Zn2+ (1 mM) and Ni2+ (5 mM), however, no increase in phosphorylation of pp160 was observed and autophosphorylation was inhibited. Vanadate (1 mM) and molybdate (100 microM) increased insulin-dependent phosphorylation of pp160 by 3-fold when tested separately and 7-fold in combination. Insulin receptor autophosphorylation was increased 50% by each and 3-fold when the agents were combined. Dephosphorylation of pp160 and the insulin receptor was analyzed directly by permeabilizing prelabeled insulin-treated adipocytes in the presence of EDTA (10 mM). Dephosphorylation of pp160 was especially rapid with a t1/2 of approximately 10 s. The t1/2 for the insulin receptor was 37 s. Zn2+ at 1 mM (a concentration that inhibited the insulin receptor kinase) was a strong inhibitor of dephosphorylation, prolonging the rate of pp160 dephosphorylation more than 12-fold and insulin receptor dephosphorylation 3-fold.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|
Inflammopharmacology
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
February 2024
CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.
View Article and Find Full Text PDFAlpelisib is a phosphatidylinositol 3-kinase inhibitor approved by the US Food and Drug Administration for the treatment of hormone receptor-positive metastatic breast cancer with (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α) mutation. In recent years a number of adverse effects have been observed to be associated with this therapy, the most notable of which is hyperglycemia. A literature search was conducted to include case studies, case series, systematic reviews, and meta-analyses within the last 10 years that evaluated patients with mutated hormone receptor-positive, human epidermal growth factor receptor 2 negative metastatic breast cancer.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430064, China.
This study compared the efficacy and safety of glucogan-like peptide-1 receptor agonists (GLP1RAs) combined with metformin versus metformin alone in women with polycystic ovary syndrome (PCOS). A systematic search of "PubMed", "EMBASE", "Cochrane Library", and "Web of Science", "Google Scholar" was conducted up to September 2024. Studies were included if they were RCTs investigating the combination of GLP1RAs and metformin in women diagnosed with PCOS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!