Effect of thapsigargin on cardiac muscle cells.

Cell Calcium

Department of Research, Ciba-Geigy Ltd, Basel, Switzerland.

Published: May 1992

The effect of thapsigargin on the activity of various enzymes involved in the Ca(2+)-homeostasis of cardiac muscle and on the contractile activity of isolated cardiomyocytes was investigated. Thapsigargin was found to be a potent and specific inhibitor of the Ca(2+)-pump of striated muscle SR (IC50 in the low nanomolar range). A strong reduction of the Vmax of the Ca(2+)-pump was observed while the Km (Ca2+) was only slightly affected. Reduction of the Vmax was caused by the inability of the ATPase to form the Ca(2+)-dependent acylphosphate intermediate. Thapsigargin did not change the passive permeability characteristics nor the function of the Ca(2+)-release channels of the cisternal compartments of the SR. In addition, no significant effects of thapsigargin on other ATPases, such as the Ca(2+)-ATPase and the Na+/K(+)-ATPase of the plasma membrane as well as the actomyosin ATPase could be detected. The contractile activity of paced adult rat cardiomyocytes was completely abolished by 300 nM thapsigargin. At lower concentrations the drug prolonged considerably the contraction-relaxation cycle, in particular the relaxation phase. The intracellular Ca(2+)-transients elicited by electrical stimulation (as measured by the changes in Fluo-3 fluorescence) decreased in parallel and the time needed to lower free Ca2+ down to the resting level increased. In conclusion, the results indicate that selective inhibition of the Ca(2+)-pump of the SR by thapsigargin accounts for the functional degeneration of myocytes treated with the drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0143-4160(92)90063-xDOI Listing

Publication Analysis

Top Keywords

cardiac muscle
8
contractile activity
8
reduction vmax
8
thapsigargin
7
thapsigargin cardiac
4
muscle cells
4
cells thapsigargin
4
thapsigargin activity
4
activity enzymes
4
enzymes involved
4

Similar Publications

Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

View Article and Find Full Text PDF

Myocardial infarction is a condition where the heart muscle is damaged due to clogged coronary arteries. There are limited treatment options for treating myocardial infarction. Microneedle patches have recently become popular as a possibly viable therapy for myocardial.

View Article and Find Full Text PDF

Cardiomyocytes can be implanted to remuscularize the failing heart. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques.

View Article and Find Full Text PDF

Introduction: Heart failure with preserved ejection fraction (HFpEF) is characterised by severe exercise intolerance, particularly in those living with obesity. Low-energy meal-replacement plans (MRPs) have shown significant weight loss and potential cardiac remodelling benefits. This pragmatic randomised trial aims to evaluate the efficacy of MRP-directed weight loss on exercise intolerance, symptoms, quality of life and cardiovascular remodelling in a multiethnic cohort with obesity and HFpEF.

View Article and Find Full Text PDF

A functional cardiac patch promotes cardiac repair by modulating the CCR2 cardiac-resident macrophage niche and their cell crosstalk.

Cell Rep Med

January 2025

Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China. Electronic address:

C-C chemokine receptor type 2 (CCR2) cardiac-resident macrophages (CCR2 cRMs) are known to promote cardiac repair after myocardial infarction (MI). However, the substantial depletion and slow recovery of CCR2 cRMs pose significant barriers in cardiac recovery. Here, we construct a functional conductive cardiac patch (CCP) that can provide exogenously elastic conductive microenvironment and induce endogenously reparative microenvironment mediated by CCR2 cRMs for MI repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!