Download full-text PDF |
Source |
---|
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119 China. Electronic address:
Non-optically active water quality parameters (NAWQPs) are essential for surface water quality assessments, although automated monitoring methods are time-consuming, include labor-intensive chemical pretreatment, and pose challenges for high spatiotemporal resolution monitoring. Advancements in spectroscopic techniques and machine learning may address these issues. We integrated ultraviolet-visible-near infrared absorption spectroscopy with physical-chemical measurements to predict total nitrogen (TN), dissolved oxygen (DO), and total phosphorus (TP) in the Yangtze River Basin, China.
View Article and Find Full Text PDFWe theoretically study high-order harmonic generation (HHG) involving an extreme ultraviolet (XUV) pulse and an intense infrared driving field, where the electron is ionized by absorbing a single XUV photon. Using a developed classical-trajectory model that includes Coulomb effects and the improved initial conditions, it is demonstrated that the resulting harmonic emission times match well with those obtained by applying the Gabor transform to data from numerical solutions of time-dependent Schrödinger equations for helium and hydrogen atoms. This confirms a classical HHG scheme under single-photon ionization: The electron, ionized by absorbing one XUV photon, oscillates in the infrared field and may recollide with the parent ion, emitting high-frequency radiation.
View Article and Find Full Text PDFThe ability to accurately express and compute the absorption spectrum is critically important for measuring the composition and concentration of substances. In this study, we present a method that reconstructs the original spectra into new spectra with linear features based on absorption intensity to improve the analysis of spectral data. The transformation matrix and mapping relationship are calculated based on the absorption intensity of the spectral data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, TU Dortmund University, Otto-Hahn-Straße 4, 44227, Dortmund, Germany.
Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell.
View Article and Find Full Text PDFAnalyst
January 2025
Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
Tetramethylpyrazine (TMP) is a compound known for its natural health benefits, but current detection methods for TMP are overly expensive and time-consuming. In this study, we developed functional materials with TMP molecular recognition properties using molecularly imprinted technology. As TMP does not produce electrochemical signals in the detection potential range, hexacyanoferrate was selected as a redox probe, combined with the highly conductive polymer PEDOT:PSS to enhance electrode conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!