The particular aim of the review on some basic facets of the mechanism of Na+/K(+)-transporting ATPase (Na/K-ATPase) has been to integrate the experimental findings concerning the Na(+)- and K(+)-elicited protein conformation changes and transphosphorylations into the perspective of an allosterically regulated, phosphoryl energy transferring enzyme. This has led the authors to the following summarizing evaluations. 1. The currently dominating hypothesis on a link between protein conformation changes ('E1 in equilibrium with E2') and Na+/K+ transport (the 'Albers-Post scheme') has been constructed from a variety of partial reactions and elementary steps, which, however, do not all unequivocally support the hypothesis. 2. The Na(+)- and K(+)-elicited protein conformation changes are inducible by a variety of other ligands and modulatory factors and therefore cannot be accepted as evidence for their direct participation in effecting cation translocation. 3. There is no evidence that the 'E1 in equilibrium with E2' protein conformation changes are moving Na+ and K+ across the plasma membrane. 4. The allosterically caused ER in equilibrium with ET ('E1 in equilibrium with E2') conformer transitions and the associated cation 'occlusion' in equilibrium with 'de-occlusion' processes regulate the actual catalytic power of an enzyme ensemble. 5. A host of experimental variables determines the proportion of functionally competent ER enzyme conformers and incompetent ET conformers so that any enzyme population, even at the start of a reaction, consists of an unknown mixture of these conformers. These circumstances account for the occurrence of contradictory observations and apparent failures in their comparability. 6. The modelling of the mechanism of the Na/K-ATPase and Na+/K+ pump from the results of reductionistically designed experiments requires the careful consideration of the physiological boundary conditions. 7. Na+ and K+ ligandation of Na/K-ATPase controls the geometry and chemical reactivity of the catalytic centre in the cycle of E1 in equilibrium with E2 state conversions. This is possibly effected by hinge-bending, concerted motions of three adjacent, intracellularly exposed peptide sequences, which shape open and closed forms of the catalytic centre in lock-and-key responses. 8. The Na(+)-dependent enzyme phosphorylation with ATP and the K(+)-dependent hydrolysis of the phosphoenzyme formed are integral steps in the transport mechanism of Na/K-ATPase, but the translocations of Na+ and K+ do not occur via a phosphate-cation symport mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-185x.1992.tb01658.x | DOI Listing |
Proteins
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
MPS1 kinase is a dual specificity kinase that plays an important role in the spindle assembly checkpoint mechanism during cell division. Overexpression of MPS1 kinase is reported in several cancers. However, drug discovery and development efforts targeting MPS1 kinase did not result in any clinically successful candidates.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vrije Universiteit Amsterdam, Amsterdam, North Holland, Netherlands.
Background: Glial fibrillary acidic protein (GFAP) is a promising biomarker for brain and spinal cord disorders. Recent studies have highlighted the differences in the reliability of GFAP measurements in different biological matrices. The reason for these discrepancies is poorly understood as our knowledge of the protein's 3-dimensional conformation, proteoforms, and aggregation remains limited.
View Article and Find Full Text PDFBackground: E2814 is a humanized monoclonal antibody that recognizes the microtubule-binding region (MTBR) of tau, a region of the protein essential for filament formation and propagation in neurodegenerative diseases. Epitope mapping showed that E2814 binds to a specific sequence motif HVPGG in the MTBR. To elucidate the atomic interactions of E2814-tau binding, we performed X-ray crystallography studies with E2814 and various tau peptides containing the HVPGG motif.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neurosciences and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
Background: Aβ peptide is a central player in Alzheimer's disease (AD) pathogenesis, which once generated rapidly tends to aggregate, from oligomers to fibrils and finally deposits into senile plaques, one of the disease hallmarks. Extracellular vesicles (EVs) are secreted by all cell types and recognized as key intercellular communication mediators. In AD, it has been reported that EVs can carry Aβ and may potentially accelerate its aggregation, thus contributing to the seeding of the toxic peptide.
View Article and Find Full Text PDFBackground: Neurological disorders are at epidemic levels in the world today. Various proteins are being targeted for the development of novel molecular therapeutics; however, no small-molecule inhibitors have been discovered. Recent studies suggest that there are few molecules in clinical trials for various secretase (α, β, and γ), caspase, and calpain inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!