Download full-text PDF

Source

Publication Analysis

Top Keywords

[potassium chlorate
4
chlorate poisoning
4
poisoning infant
4
infant exchange
4
exchange transfusion
4
transfusion peritoneal
4
peritoneal dialysis
4
dialysis cure]
4
[potassium
1
poisoning
1

Similar Publications

Understanding the properties of explosives is the basis for investigating and analyzing explosion cases. To date, due to the strict legal control of standard explosives and initiators, homemade pyrotechnics composed of oxidizers and fuels have become popular explosive sources of improvised explosive devices (IEDs) threatening greatly social stability and personal safety. The reactivity of pyrotechnics strongly depends on their intrinsic characteristics and operating conditions, which determine the efficiencies of heat and mass transfer between the reaction zone and the unreacted zone.

View Article and Find Full Text PDF

The title compound, (CHNO)[CuCl(CHNO)]·2HO, was prepared by reacting Cu acetate dihydrate, solid 8-hy-droxy-quinoline (8-HQ), and solid pyridine-2,6-di-carb-oxy-lic acid (Hpydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydro-chloric acid. The Cu atom exhibits a distorted CuONCl octa-hedral geometry, coordinating two oxygen atoms and one nitro-gen atom from the tridentate Hpydc ligand and three chloride atoms; the nitro-gen atom and one chloride atom occupy the axial positions with Cu-N and Cu-Cl bond lengths of 2.011 (2) Å and 2.

View Article and Find Full Text PDF

This study addresses the environmental pollution and safety hazards associated with the cyanide leaching process in gold mining, proposing a more environmentally friendly and cost-effective potassium chlorate leaching method. The feasibility of this method was verified through thermodynamic analysis. Building upon single-factor experiments, the study utilized a response surface methodology to investigate the effects of potassium chlorate dosage, liquid-to-solid ratio, reaction temperature, and reaction pH on leaching efficiency.

View Article and Find Full Text PDF

Mechanistic Insights into Chloric Acid Production by Hydrolysis of Chlorine Trioxide at an Air-Water Interface.

J Am Chem Soc

July 2024

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.

Chlorine oxides play crucial roles in ozone depletion, and the final oxidation steps of chlorine oxide potentially result in the formation of chloric acid (HClO) or perchloric acid (HClO). Herein, the solvation and reactive uptake of three stable isomers of chlorine trioxide (ClO), namely, ClOCl(O)O, ClClO, and ClOOOCl, at the air-water interface were investigated using classical and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) coupled with advanced free energy methods. Two distinct mechanisms were revealed for the hydrolysis of ClOCl(O)O and ClClO: molecular and ionic mechanisms.

View Article and Find Full Text PDF

Homemade explosives, such as peroxides, nitrates, and chlorates, are increasingly abused by terrorists, criminals, and amateur chemists. The starting materials are easily accessible and instructions on how to make the explosives are described on the Internet. Safety considerations raise the need to detect these substances quickly and in low concentrations using simple methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!