We have previously demonstrated (A. H. Batchelor and P. O'Hare, J. Virol. 64:3269-3279, 1990) the selective activity in human neuroblastoma cells (IMR-32) of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. In this work, we provide evidence for the basis of the selective activity of this latency-associated promoter (LAP). Recombinant constructs containing sequences up to -143 (relative to the LAP cap site) linked to the chloramphenicol acetyltransferase gene retain strong activity in HeLa cells but exhibit extremely weak activity in IMR-32 cells. Sequences mapping within the 108 bp upstream of -143 to position -251 enhance LAP activity by over 15-fold, restoring optimal levels of expression in IMR-32 cells, but have little or no effect (1.5-fold) in HeLa cells. This cell-type-specific enhancement of promoter activity took place in two major steps, with sequences between -143 and -158 conferring a four- to fivefold effect and sequences between -177 and -251 conferring a further threefold effect. Furthermore, sequences mapping from -40 to -258 could transfer the ability to be expressed in neuroblastoma cells to the normally inactive immediate-early 110K promoter (IE110K), increasing levels of expression by 35-fold. By comparison, this region had a relatively minor effect (twofold) on the activity of the IE110K promoter in HeLa cells, even though this promoter is open to activation by other mechanisms. However, neither of the overlapping subregions from -40 to -143 or -138 to -258 could confer efficient IMR-32 cell expression on the IE110K promoter, and we present alternative models for multiple element requirements or the requirement for a critical site around -140 which is not retained in either subfragment. We provide consistent evidence for a site around -140 and demonstrate the presence selectively in IMR-32 cells of a DNA-binding factor which binds a probe spanning this region. We propose that this element and the cognate factor (IC-1) may be involved in the selective activity of the LAP in neuroblastoma cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC241139 | PMC |
http://dx.doi.org/10.1128/JVI.66.6.3573-3582.1992 | DOI Listing |
Ecol Lett
January 2025
National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.
View Article and Find Full Text PDFSci Rep
January 2025
Department of ECE, Kallam Haranadhareddy Institute of Technology, Guntur, Andhra Pradesh, India.
Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Zentalis Pharmaceuticals, Inc., San Diego, CA, USA.
Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.
View Article and Find Full Text PDFChin Med
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!