The generation of inositol phosphates upon muscarinic-receptor activation was studied in [3H]inositol-loaded exocrine cells from the nasal salt glands of the duck Anas platyrhynchos, and the metabolism of different inositol phosphates in vitro was studied in tissue homogenates, with particular reference to the possible interaction of changes in intracellular [Ca2+] ([Ca2+]i) with the metabolic processes. In intact cells, there was a rapid (within 15 s) generation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, followed by an accumulation of their breakdown products, Ins(1,3,4)P3 and inositol bis- and monophosphates. Ca(2+)-sensitivity of the Ins(1,4,5)P3 3-kinase was demonstrated in tissue homogenates, with the rate of phosphorylation increasing 2-fold at free Ca2+ concentrations greater than 1 microM. However, addition of calmodulin or the presence of the calmodulin inhibitor W-7 (up to 100 microM) had no effect. 3-Kinase activity increased proportionally with the initial Ins(1,4,5)P3 concentration up to 1 microM, but a 10-fold higher substrate concentration produced only a doubling in the phosphorylation rate. Ins(1,3,4,5)P4 was dephosphorylated to Ins(1,3,4)P3, which accumulated in the homogenate assays as well as in intact cells. Depending on its concentration, Ins(1,3,4)P3 was phosphorylated [in part to Ins(1,3,4,6)P4] or dephosphorylated. To investigate the Ca(2+)-sensitivity of the 3-kinase in intact cells, excess quin2 was used to buffer the receptor-mediated transient changes in [Ca2+]i in [3H]inositol-loaded cells. These experiments revealed that increasing [Ca2+]i from less than 100 to approx. 400 nM (i.e. within the physiological range) has no effect on the partitioning of Ins(1,4,5)P3 metabolism (phosphorylation versus dephosphorylation) and on the accumulation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4. This indicates that activation of the 3-kinase by physiologically relevant Ca2+ concentrations may not play a major role in the generation of Ins(1,3,4,5)P4 signals upon receptor activation in these cells. The latter are mainly achieved by the receptor-mediated increase in Ins(1,4,5)P3 in the cell and its phosphorylation by the 3-kinase in a substrate-concentration-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1130844PMC
http://dx.doi.org/10.1042/bj2820703DOI Listing

Publication Analysis

Top Keywords

intact cells
12
exocrine cells
8
inositol phosphates
8
tissue homogenates
8
ins145p3 ins1345p4
8
ca2+ concentrations
8
cells
7
ins145p3
6
3-kinase
5
calcium-sensitivity inositol
4

Similar Publications

Oral intake of degalactosylated whey protein increases peripheral blood telomere length in young and aged mice.

Sci Rep

December 2024

Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.

In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks.

View Article and Find Full Text PDF

Vascular-like tissues composed of cells maintaining their shape and structure at any position in a culture dish without the use of gels or other artificial materials are ideal vascular models to test the effects of candidate drugs on cells without adsorption by artificial materials and analysis of structural changes over time. In this study, we aimed to prepare fiber-shaped cell aggregates composed of human umbilical vein endothelial and mesenchymal stem cells as vascular pericytes anchored to the bottom of culture dishes at a defined location using our developed cell self-aggregation technique and dumbbell-shaped culture groove. The fiber-shaped cell aggregates maintained their shape for at least two weeks without rupture, and histological analysis revealed that they formed a unique tissue structure with a gapless endothelial layer on the outer surface and capillary-like structures oriented in the same direction as the long axis of the fiber in the medial side.

View Article and Find Full Text PDF

Canine extraskeletal osteosarcomas are mesenchymal, osteoid producing tumors that can arise in soft tissues without initial involvement of the bones. An 8-year-old intact male Beagle dog presented with anorexia, abdominal pain, intermittent vomiting and melena. The patient had a history of recurrent ingestion of cotton based-toy fragments, but no prior surgical procedures involving the abdominal cavity.

View Article and Find Full Text PDF

Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug-protein interactions, such as those with transient protein complexes and membrane-associated proteins.

View Article and Find Full Text PDF

An MSRE-Assisted Glycerol-Enhanced RPA-CRISPR/Cas12a Method for Methylation Detection.

Biosensors (Basel)

December 2024

Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China.

Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor with high prevalence in southern China. Aberrant DNA methylation, as a hallmark of cancer, is extensively present in NPC, the detection of which facilitates early diagnosis and prognostic improvement of NPC. Conventional methylation detection methods relying on bisulfite conversion have limitations such as time-consuming, complex processes and sample degradation; thus, a more rapid and efficient method is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!